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19. Abstract continued
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posterior marginal distributions. Then, conditional of those estimates, the point esti-
mate of factor scores and factor loadings are derived as the joint or the marginal mode
of the posterior distribution of factor scores and factor loadings depending on the in-

vestigator's interest.

The marginalization is done via some variations of the EM algorithm and it is found that
the different variations result in almost identical estimates. It is also found that
the effect of the prior distribution of error variances is such that it reduces the num-

ber of local maxima. Finally, by specifying a priori zeros in the locational hyper-

parameters of factor loadings, a simple structure can be obtained without rotation.
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Bayesian Factor Analysis*

Shin-ichi Mayekawa

The University of Iowa

Abstract

A new Bayesian procedure for factor analysis is developed in which
factor scores as well as factor loadings and error variances are treated
as parameters of interest. The presentation is fully Bayesian in the
sense that all the parameters have prior distributions and the posterior
mode of a subset of the parameters is used as the point estimate.

The model is a standard one where the observations are expresssed
as the sum of the linear combination of factor scores, with factor
loadings being the weights, and a normal error term. As the prior distri-
bution the following exchangeable form is assumed:

A factor score vector for each observation has a common normal
distribution.

A factor loading vector for each variable has a common normal
distribution.

A error variance for each variable has a common inverted chi
square distribution.

When the exchangeability of all the observations/variables is in question
observations/variables may be divided into several subsets and the
observations/variables within each subset may be treated as exchangeable.

Since the posterior marginal distribution of factor loadings and
error variances can be expressed as the product of the covariance-based
likelikhood and the prior distributions of factor loadings and error
variances the proposed method icludes both th rndom and the fixed
factor analysis models. -- ,- . ,4 2 &, ._L :2, I/f.?;

The mode of the hyperparamet +s is first derived from their posterior V
marginal distributions and conditional on those values the mode of error
variance is derived from their posterior marginal distributions. Then,
conditional of those estimates, the point estimate of factor scores
and factor loadings are derived as the joint or the marginal mode of the --
posterior distribution of factor scores and factor loadings depending on

the investigator's interest.
The marginalization is done via some variations of the EM algorithm

and it is found that the different variations result in almost identical
estimates. It is also found that the effect of the prior distribution of
error variances is such that it reduces the number of local maxima.
Finally, by specifying a priori zeros in the locational hyperparameters
of factor loadings, a simple structure can be obtained without rotation.

*Support for this research was provided under contract #N00014-83-

C-0514 with the Personnel Training Branch of the Office of Naval Research,
Melvin R. Novick, Principal Investigator.
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Bayesian Factor Analysis

CHAP=~ I

IrNhODUCTION

Factor analysis is a multivariate statistical method used to explain the -

relationships among observed variables. Simply stated, standard factor

analysis assumes that each observed variable is a weighted sum of two sets of

random variables, namely, comn factor scores and unique scores, all of which

are unobservable. The purpose of the method is to estimate the weights, or

factor loadings associated with each variable and to estimate the factor scores

associated with each person. A typical application of the factor analysis

method consists of the calculation of a correlation/dispersion matrix of the

observed variables, which contains the sufficient statistics under the usual

model, estimation of the weights, statistical testing of the model, and

interpretation of the derived latent variables. Therefore, much of the

literature of factor analysis is concerned with how to estimate factor

loadings, how to test the model statistically, and how to find a meaningful

interpretation of those latent variables.

Sometimes, however, it is desirable to go further and to estimate the

values of those latent variables associated with each observation. For

example, the vector unfolding model, which is often used to analyze the

underlying structure of preference among a set of stimuli, has essentially the

same model, Carroll(1972), or Bechtel(1976), and the scale values of each

• . ; . .. .. ..- - -. -. .- . . . -. .. . . . . . . . . . .. ..* -, . . I . . ° . . . .. . . . .



2

stimulus most be known in practical applications. In applications of

Spearman's theory of general intelligence it is the value of 'S' that is of

interest in all applications. Also. the congeneric test model in classical

test theory uses the same model as the factor analysis. Lord and Novick (1968).

where the true score is represented by the factor scores. Therefore, if the

individual true scores are needed they mst be estimated. (See Chapter III for

the detail.) However, as we shall see in Chapter II, these values cannot be

determined uniquely under the standard factor analytic model because they are

not treated as parsaneters of the model but remain as random variables even

after the factor loadings are estimated. This general problem is known as the

indeterminacy of factor scores, which, was probably first pointed out by Wilson

(1928) and later elaborated by Guttman (1955). In this sense the standard

factor analytic model was called the random factor analytic (IRFA) model by

McDonald (1979) and Anderson (1984).

The development of a model which enables us to estimate the values of

those hypothetical concepts, namely, the factor scores. is not new. For C-

example, Lawley (1942). Whittle(1952), Anderson and Rnbin(1956).

Joereskog(1963). McDonald and Burr(167). and NcDonald(1979b), have considered

this problem, although usual textbooks do not discuss this model in

detail,(seoe. for example, Harman's(1976, sec.2.3) treatment.) However, none of

those methods were successful in the sense of providing unique estimates of

factor scores. As we shall see later, this is due to the fact that the

likelihood function of the fixed factor analytic (FFA) model, in which the

factor scores are treated as parameters, is unbounded above, which implies

nonexistence of maxiam likelihood estimates.
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The purpose of this thesis is to develop a method that enables the

estimation of factor scores as parameters. Due to the nature of the problem

the treatment is based on Bayesian fixed factor analysis. In Chapter II we

first provide a brief review of the random factor analytic model and its

classical and Bayesian estimation procedures. Then, in Chapter I1, the

classical fixed factor analytic model is introduced and its new Bayesian

treatment is discussed in Chapter IV. It is shown that the method proposed is

more general in the sense that both the RFA and the FFA models are included as

special cases. In Chapter V, an evaluation of the new method is presented

based on some real and artificial data sets. -
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(APIM 11

REVIEW OF THE RAMOM FACMR ANALYIC (ICFA) DOME ,-

Model

Factor analysis is one of several multivariate statistical methods

studying the underlying relationships between observed variables. It assumes

that each observed variable, y j=l,2,...,p. c n be represented as a sun of

three components:

(2.1.1) y - + E feaje] + UJ-

where the a is the overall mean of variable J, the fre e=,2.....r,

r ( p, are latent (unobserved) variables called common factors, the a,je

e=1,2.....r, are the weights (called factor loadings) that link the 
eth

factor to variable j, and the u are other latent variables called unique

factors for variable j. The number of latent common factors, r, is usually

referred to the number of dimensions. Arranging p observed variables together,

(2.1.1) can be written as

(2.1.2) Le_ + Af + u,

where

LN [mlm 2..... ap', 1. -
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A- [ aje J, p Z r,

[ff 2- f r] r x 1.

U [u 1 Du ... Up. p 1..

Using E. D, and C to represent expectation, dispersion and covarianoe

operators, respectively, the following specifications are typically made:

(2.1.3) E(f) - 0

(2.1.4) D(f) -C

where CF is the r x r factor correlation matrix

with diag(c7) -

(2.1.5) E(u) - 0.

(2.1.6) D(u) =D.

where D is the p x p dLagonal matrix consisting of dl'so

(2.1.7) C(f,u) = 0. (zero).

We call this model, following MaDonald(1979b), the Random Factor Analysis (?A)

model, in the sense that f is treated as a random variable.

Under the IFA model we can deduce the following:

(2.1.8) eRy) -.

(2.1.9) D(y) - 0 =ACpA' + D,

C(z.f) - :AC

(2.1.10) E(l.f) - + At.

and
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(2.1.11) D(XI) =D.

The last relation, (2.1.11), is sometimes called 'partial linear independence'.

Joereskog and Soorbom(1979, oh.l), or 'weak local independence'.

McDonald(1979a). The implication of (2.1.11) is that, given f, the unique

scores are not correlated with each other and that with respect to f the

conditional variances of the unique scores are homoscedastic within each

variable. It should be noted that the number of dimensions, r, is defined by

(2.1.11). That is, r is the minimum number of common factors such that the

conditional dispersion matrix of the observed variables given the common

factors is diagonal. The only substantive assumptions of the RIA model are

that r < p and that the variables are conditionally independent and

homoacedastic (2.1.11). Beyond that the model is simply a decomposition, cf.

Lord and Novick, 1968, Ch. 24.

It can be shown that if the original variables are rescaled by p x p

diagonal matrix V and a p x 1 vector v so that

(2.1.12) * = V( -v

then the resulting variables have the mean and dispersion,

respectively,

(2.1.13) E(z ) = V(m V).

D(y ) = VV.

Therefore, the change of original scale results in the corresponding

rescaling of the mean, factor loadings and unique variance, namely,

C C C

a V(m-v), A VA, and D VDV.

i";" '; - ' ' ' ' " " L r ... " " i ' " " " " " : c ' ._ " . . ." , . . . _ . .. . "
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When we estimate parameters from the observations, whether this property holds

among the estimates depends on what method of estimation is used. It is known

that maximum likelihood estimates and Bayesian mean, median, and modal

estimates have this property. Some other estimation procedures do not have

this property.

It is well known that the model (2.1.2) through (2.1.7) is not unique.

Consider the transformation

(2.1.14) f = Tf,

where T is the r z r nonsingular matrix with diag(T'CFT)u'r.

With this new latent variable we can rewrite the model as

(2.1.15) m =u + Bf +u.

where B A (T')

which has the same form as the original model.

With this new parametrization, we have

(2.1.16) E[ f I = 0.

(2.1.17) D[ f T T-T'c.

(2.1.18) D[ y I - B T'cFT B' + D,

and

(2.1.19) C[ Z*f I - B T'CFT ACF T.

This implies that, given one set of factors, we can always transform them into

a desired form by appropriately choosing the transformation matrix T. This is

known as rotational indeterminacy. For example, if the T matrix has the form

..................................... . .... ...
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LA Martin and McDonald's prior on D

CombininS the prior distributions of A and C in Li through

LU with the prior distribution of D of the form

the density of d. is proportional to Exp[(-1/2)v /d -"

J~ J

J=1,2 ....,p, independently,

where v a are prior constants,

we have L41, L42, and L43, say, respectively.

PR

For those elements of A of which we have strong prior

information,

a : N(a ,G),

where a is the column roll-out of those elements of A.

For the rest of the elements of A, of which the information

is vague, a locally uniform prior is assumed.

For each element of D, independently,

the density of dj proportional to 1/d.-

is used.

a , G. and h are the prior constants.

A and D are mutually independent.
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A. CF. &ad D are mutually independent.

12 Non exchangeable factor loadings

For those elements of aje s not fixed, independently,

2 2

a s N( a 8J e : (aje je )

d w /s : x2 ( d
ij e je is

For % and D the same priors as Li is used.

a je die j e  for those elements of A not fixed,

are the prior constants.

A, C and D are mutually Independent.

3 Noninformative prior

For those elements of A not fixed,

a locally uniform.

For Cr, hierarchically,

CIIR : W( R , g,

density of R is proportional to

S is the prior constant.

-----------------------. ...... . .. .. .. .. .. .. . .. 

...............................................................................................
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2. Likelihood function

Li through IA and PR Sample dispersion matrix is assmed to have . -

the Vishart density in (2.2.9). The likelihood

L1 in (2.2.10) is used.

KP Same as above with nonzero off diagonal element of D.

W The data matrix Y is assumed to have the Normal

density in (2.2.12). the likelihood L2 will be used.

3. Prior distribution

LI Exchangeable factor loadings

For those a a which are not fixed, hierarchically,
JS

2  2
a Ia s N( a a) i.i.d..
je

0
a locally uniform,

wd/s2  X2 (d).

For
-1

1F : V( R, g).
, Wr R,.

For each element of D, independently,

hjvj/d X2 (h ).

d, we R. i, and v'a. and h 'a are prior

constants.

"-- ---- -.- ' i'- - ; ' --."2 --' ' .-. -. .. -. "- :. .. i .i ."i - ' - - 2 i -' --. ' -- ; : - : .i .i . .- - ." , " . --, -, -.. .- '. - , -,
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S. Evaluate the posterior distribution in order to find

some values of the parameters which best represent the

posterior distribution, (location and dispersion.)

In the following section a stop by stop comparison of seven existing Bayesian

methods will be presented. These methods are:

(Li) Loe'(1981) case 1.

(12) lee's(1981) case 2.

(WS) Lees(1981) case 3.

(IA) Lae's(1981) case 4.

(PR) Press'(1982).

(KP) Kaufman and Press'(1973).

(10) Ions's(1980).

(Each method will be denoted by the abbreviation presented

in the parenthesis.)

Because Martin and MoDonald's(1975) method can be treated as a special case of

Le's method, it will not be considered explicitly.

Stepwise Comparison of Bayesian Methods

1. Paramters of interest

Li through IA A. %, and D with some of the elements of A fixed.

PR A andD.

KP A and D, with D not restricted to be a diagonal,

r not restricted to be less tban p.

WO m. A, and D.
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approximation to the X2 distribution.

To test the hypothesis with some of the elements of A or CF being fixed,

say. to zero, a slightly different procedure is employed. This approach is

called confirmatory factor analysis or the restricted miodel, [3.oreskog

(1969). Treating CF as a parameter in the model, if the pattern of the

values fixed is such that it enables the unique maximum of the likelihood, the

minimization is performed without restrictions (2.2.15) and (2.2.16) with

respect to D and those elements of A and C. which are not fixed. If this is

not the case the minimization will be performed subject to some additional .

condition which guarantees a unique solution. In either case, sow adjustment

of the degrees of freedom is necessary. Essentially, d.f. is equal to

(2.3.4) p(p+l)/2 - number of free parameters to be estimated

+ number of independent restrictions on the parameters.

For further details, see Joereskog(l69).

The Review of Bayesian Estimation Methods in IWA Model

In this section a review of existing Bayesian estimation methods in the

WFA model is presented. In general, Bayesian estimation proceeds as follows:

1. Identify the parameters of interest.

2. Specify the conditional distribution of data given

parameters, namely, the likelihood function.

3. Specify the form of the prior distribution of the parameters.

4. Find the posterior distribution of the parameters given the data.
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for the resulting normal equtions. Since the grand man m is treated as known

in their method. the result is the same as the IRE based on the

likelihood.

Goodness of Fit Test in WA Model

With large N. it is known, Joereskog (1967). that minus twice the log

likelihood ratio

(2.3.1) L =-2( 1 L (A+,D+IS) )

-in( ISI (N-1)IuBzp[-(N-1)I2)tr(S"iS)] )

- (N-1)( FllA1 D+ ) - ln(ISI) - p )

is distributed as

ILLR X21( (p-r)2  (p4r))12 ).

The Inside of the second logarithm term is the valu of L1 evaluated at

G = (N/CN-I))S . Therefore, the hypothesis

(2.3.2) Hr 0 - ACPA' + D with specified r,

can be tested against the alternative hypothesis

(2.3.3) H0 : 0 is positive definite symtric,

with approximate significance level alpha, by comparing the value of LiR to the

(1-alpha) percentile point of the X2 distribution. i.e., if LLR exeosds the

percentage point, Br will be rejected. Bartlet(1951) has suggested that the

use of N-1-(2p+S)/N-2r/3 in place of N-I in (2.3.1) in order to obtain a better



matrix, thus, the 0 matrix, must be caloulated by (2.2.23) each time D is

updated since we are treating F2 as the function of D only. The algorithm

usually converges rapidly to a local minimom. It is known, however, that the

minimom often lies on the region where some of the error variances are zero,

i.e.. a Heywood case.

Another approach to the ML estimation of the RFA model is found in Rubin

and Thayer (1982) where the EN algorithm is used. ( See Chapter IV for the

explanation of the EM algorithm. ) Their solution is the iteration of the

following two steps:

The E-step:

(2.2.26) W- D + AY0 ')- ACF. ",

and

(2.2.27) Q ( W' SV +V)

where

(2.2.28) V CP CF cA(D4AciA') 1AE.

The N-step:

(2.2.28) A = S W Q,

and

(2.2.29) D = diag( S - SMM'S ).

The method is derived by writing the L3 likelihood discussed in Chapter III

in terms of the sufficient statistics, S, (1/N)Y'F. and (1/N)F'F, replacing the

corresponding quantities by their conditional expectations given Y. namely, S.

SN, and Q I differentiating the result with respect to A and D. and solving

7-.-"
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should be taken. Also, from (2.2.18) we have, given A,

(2.2.24) D = diag( S - ACA' ).,

Therefore, the iteration of (2.2.23) and (2.2.24) gives the desired minimu of

F2 when the process converses. However, this method given in Lawley and

Maxwell (1963) is known to be very slow to converge. Therefore, the following

method is usually used [Lawley and Maxwell (1971) or -rooreskog (1967)1].

Noticing the fact that the conditional minimum of F2 with respect to A given

D is obtained analytically by (2.2.23) we may consider F2 as a function of D
Io.~

only. That is, the derivative of F with respect to D can be evaluated as
2

(2.2.25) d F2 /d dj OF /Od + tr([12/8A]'[8A/8d ]),

j 2 j [a 2 DPOAO )

j = 1.2,.... p.

However, the second term vanishes at the point where (2.2.23) is satisfied

since aF2/8 A is zero if the A matrix given in (2.2.23) is used to evaluate

it. Therefore, the derivative of F2 with respect to D, when it is regarded

as a function of D only, is given by (2.2.18) with the A matrix. thms the -

matrix, defined by (2.2.23). Given the derivatives, the minimization of F2

can be performed via several existing numerical methods which do not require

the information provided by the second derivative of F2 with respect to D.

For example, the Fletcher-Powell method, which is advocated by Joereskog

(1967). determines the direction of search for the minimun by approximating the

inverse of the second derivative matrix using the information provided by the

first derivatives only. It sould be noted that when the evaluation of F is
2

necessary, say, in the cubic search along the direction determined, the A

..... .... .... ..... .... .... ..... .... ....

. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



solution based on F is as follows. The partial derivatives of F with

respect to A and D are:

(12.2.17) OF2 18A- 2( 0-1A-- - . ..;-

and

(2.2.18) OF2/OD = diag( o-l-o -. 

( See the Appendix for matrix differentiation. )

By setting (2.2.17) equal to zero we have

(2.2.19) M-1 A - A.

Bat, by Lawley's trick in the Appendix, it can be reexprossed as

(2.2.20) SD-1A(I +A'D6-A)-1  A.
r

thus,

(2.2.21) SD- A = A (I +A'D A),

Orr

or,

(2.2.22) D SD D A - D-1 2A (I +A'-lA).
r

This form shows, with the restriction (2.2.15), that (I +A'D1A) is the

r

sigen values of D - 11 2SD - 1 2 and that D71/2A is the associated eigen

vectors. That is, given D. the A matrix which minimizes F. can be written as

(2.2.23) A D Q(L+I 11/2
r

where L is the eigen value matrix of D 1 2 9D 1 2and a is the

associated orthonormal eigen vectors.

It can be shown that in order to minimize F the r largest esigen values

.2
-7'
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12

x Ezp(-1/2)tr((Y-'l (T-.M9'')3

jolg(-N/2) x Ezp[(-N/2)tr(-S)lj

x Exp[(-N/2)(Z. - 1 .( )),

where y." (/N) i= 1 [ Ni I

Noticing that regardless of the value of 0. L2 is maximized at

(2.2.13) _ = ,

the Me of A and D can be found by minimizing the monotone decreasing function

of

(2.2.14) F2(A,D) - iOi + tri s S"

Because P2 is not a monotone function of F1 the resulting solution, when N

is not so large, is different.

In both methods, in order to remove the rotational indeterminacy the

restrict ions

(2.2.15) A'D-IA is diagonal,

and
(2.2.16) CF - I

C r-

are enforced. If the factors are assumed to be correlated, the correlated

factor will be found by finding the transformation matrix P described in

(2.1.14) through (2.1.20).

Several numerical methods are available, for example, see

Lawley and Naxwoll(1963.1971) or Joereskog(1967,1977). The outline of the

-. * -... -.- .-.. . . . . . . . . . . . . . . . . .
• L -. .o -' -" 
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(2.2.6) S (1/N)YIY.

where

(2.2.7) Y [ZIZ2... ZNr'. N p,

and

(2.2.8) 3 IN - (IIN)lW

has the Wishart distribution. Press(1972).

(2.2.9) N aS W Wp(CV'+ DN-1,

where V ( C * df ) denotes the Vishart distribution withP

the expectation df x C and the degrees of freedom. df.

The likelihood of A and D is proportional to

(2.2.10) Ll(ADIS) - I01-lN- 1'l2Ezp[-(N/2)tr(7-S)],

where the symbol - denotes the proportionality.

Therefore, in this forulation, the statistical estimation of the original WA

parameters reduces to the estimation of the covariance structure shown in

(2.1.9) under the Vishart probability model. (Usually, L is estimsted by the

sample overall uman.) The maximum likelihood estimates (ME) of A and D are

found by mininizing a monotone decreasing function of

(2.2.11) F (A.D) - lnIG + (N/(N-1))tr(a-lS).

Although this is the most comonly used ML solution there is another IL

estimation procedure based on the original density of Y described in

Anderson and Iubin(1956) and Mardi&, et., al.(1979). Tw likelihood of a. A.

and D given Y can be written as

(2.2.12) ,2(ADIY) -

-. ° -. % o. - -o- °... ... o.-. ....-.-.. ,, ..- o .... .. , ........ .......... . .

. . '. ' ' '. .% :' .. : .' .. " . ." .. . ' v
, ' ' ; ' - ' '

" " . ;" % ." " " '".. ' .. '' .- " .. .. ' '. .""' . ""L2. . . .
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where 0 is defined in (2.1.9).

N a CI*B denotes thu p-variate normal distribution
p

with the masn vector a and the dispersion matrix 0.

and the symbol :is used to denote the distributional law.7

By applying Rao's (1973) formulas Sa.3(1) and Sa.2.9

it can be shown that if we replace (2.1.7) by its stronger form,

(2.2.2) f and u are statistically independent,

then (2.2.1), together with (2.1.2) through (2.1.6). imply.

(2.2.3) f N r(O My,

and

(2.2.4) u N (0,D).

Therefore

(2.2.5) yIf N (m+AfD).
p

Because of normality. (2.2.5) implies the local independence of zgiven f

in the sense of Lord and Novick(196.ch.24). However, it is not true that the

normality of and the weak local independence in (2.1.11) imply the strong

local independence in (2.2.S) and the independence of f and ui in (2.2.2).

Conversely, in order to derive the normality of Z in (2.2.1). we can start with

(2.1.2). the independence of f and !in (2.2.2). and their normality in

(2.2.3). and (2.2.4).

Having observed N independent observations. Zi, i-l.2.....,N, it follows

that the sample dispersion matrix
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random, and, therefore. cannot be determined. Some interesting discussions of

this point from a Bayesian point of view are found in Bartholomew (1981) and

Mardia, Kent, and Bibby (1979).

Historically, the RFA model is stated in terms of the correlation matrix,

that is, using [dia()] - /2 and a as the scaling constants V and v,

respectively, in (2.1.12). (2.1.9) can be written as

(2.1.22) D(y") diagC)- 12 0 diagC)- R, say,

where R is the population correlation matrix of the observed variables.

However, instead of the population man and standard deviation, which are not

observable, if we use the sample analogues of those quantities as the scaling

C

constants. (2.1.22) is no longer correct since x is not a linear

transformation of y. Similarly, if we treat those estimates as fixed scaling

constants, (2.1.22) is not correct either since in this case R is not the

population correlation matrix but simply a resealed oovariance matrix.

Therefore throughout this paper we do not refer to the correlation matrix.

Maximum Likelihood Estimation in IWA

In this section we briefly review the Maximum Likelihood (IL) estimation

procedure of the WA parameters, namely a, A. and D. In order to perform IL

estimation it is necessary to introduce the following full distributional

assumption:

(2.2.1) y N (m 0)
. ~p -



(2.1.20) T - P N- 1/2 Q N1/2 p'.

where CF - P M P' is the normalized sigen dooompo3ition of CF.

and Q is any r x r orthonormal matrix,

the now variable f has the same correlation matrix C?. If the T matrix

has the form

(2.1.21) T - P rl/2 Q,
C

the now variables become orthogonal, i..e., D[ f ] - I.

It should be also noted that under the MWA modol f is treated as a latent

random variable and therefore cannot be estimated in the usual statistical

sense# i.e., after a, A, and D have been estimated f and u still remain as

random quantities. The so called 'problem of factor score indeterminacy' stems

partly from this fact. Usually, in order to 'estimate' the value of f

associated with each object, i=1,2,....N. sow arbitrary least squares

criterion is introduced and the value which minimizes the criterion, given the

estimate of A and D. is sought. Without these additional criteria it is known,

Guttman(1955), that, as a linear combination of 1, the factor scores cannot be

uniquely determined even if we have estimated A and D uniquely. (See the

Appendix for the derivation of the Guttman/Ketselman formula.) That is, given

A and D, we can construct an infinite number of sets of f and u which satisfy

the model (2.1.2) through (2.2.7). Shiba (1969) has identified at least

sixteen methods with different criteria. Simply stated, given the particular A

matrix and conditioning on the observed value of1 , f and u in (2.1.2) remain

- - -.- .- .- -,.,.. .. -.-.. . . . . . .- .-. -. . . . .....-.-.- .-.. . . ...... . .-.. . .. ,. .. ,...o - -. .,-.-."-... . . ..- ,.,. ", .
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[P

In this model, instead of using the (A.D) parametrization,

the prior density of (A,Q) is assumed to be proportional to

f(A,1) = Enp[(-1/2)tr(A-A2)V2(A-A2) '0)l

• x - h p ) 2 p 1 p(-1/2 )tr(I Q(A))I.]

where Q(A) - So + (A-A1)V1(A- 1),.

and h. V1, V2. A1 , A 2  and S. are the prior

constants.

This form of density implies that given 0, A is a truncated

matrix normal distribution, and that given A, 0 is a

truncated Wisart distribution. The truncations are done

so that D 0 0 - AA' is positive definite.

WO

For m.

m : N( 0 Q 01 -> 0 (zero).p- m m

For each element of A, independently,

a N( 0 , a ) e-1.2,.... r.

Because the main purpose of Wong's study is the marginal

maximum likelihood estimation of D, no prior distribution

of D is used.

a and A are mutually independent.

.1| - -. -II- . . . .I . . .... . . '
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s2 s are the prior constants.

Voug also proposed a prior of the following form:

m same as before.

For each column element of A. independently and hierarchically.

2 2 2

a N( 0 2 s ) s0 -) infinite.

Empirical Bayes estimation of the prior constants, namely,

2
s e-1,2,....r, is discussed in his paper briefly.

4. Posterior distributions

Li

* s2
After integrating a and s out,

fA,D, cJS) , L(AID)

x 1 (a je-a. ) 2,dw/n 1-(nA4d-1)12

I Ii-(8r-1)/2Ezp(-1(/2) tr(3C; 1)I

d- N [d ( ha+2)/ 2 ]
J-1 J

x Expt(-1/2)j p1 h v /d ] ],

where e denotes the product of those nA elements of A
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which are not fixed.

L2

f(A.D.C.IS) L L(ADD)

x 1r,41 IN a -a is +d ew je4)/ 

x the last three factors of LI)

f(A,DC IS) -L 1(AD)

x Cthe last two factors of Li

L41. L42. and L43

* -f(A,DCpIS) of these cases are the saw as the ones in

Li, L2 and 13, respectively. with the last two factors

replaced by i' [Ezp[(-lIZ)v /4 1

PR

fCA.DIS) -L 1(ADD)

x 'Ezhp(-l/2)(a-a)'a-*]

KP

f(ADIS) -L (ADMfA.1l),

where f(AMO is defined in the above.
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The marginal distribution of A is proportional to

f(AIS) FIAA, -( h+N- 1 )/ 2

E Ep[(-1/2)tr(G(A-A2 )V2(A-2 )'],

where F I is the confluent hyperSeometric function

111

of the arguments (h+N)/2. h+N+p, -l/2(AA')-Q(A)+S0.

defined in erz(1955).

WO

After marginalization of m, the conditional

distribution of A given D and Y is proportional to

f(AIDY.) - LY(AD)

2SExp[(-l/2)%.rl[ a.a ', 1 .

5. Evaluation of the posterior distribution

Lae(1981) suggests the use of the joint mode as an estimate of each

parameter. A numerical method analogous to the ML solution is proposed.

Sowever, this provides the location information only. Press(1982) dos not

suggest which values to be used as estimates. Kaufman and Press(1973) suggest

the exact evaluation of the marginal mode and the normal approximation of the

density. The apporozimation of the form

!Is N ( a, S1 ) truncated so that

(N/(N-1))S-AA' is p.d.,
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wher a Is the oolum roll-out of A,

- 1 -11

[ s1 + V2  GI,

S = ( *I-I)S/(h+N-1).-

%S1  +(V 2 G 0 21

_an i2 are the ooluni roll out of A1

a' and A2, respectively,

and x denotes the [ronooker product.

Wog1980) does not follow the usual Dayesian approach. Instead, he suggests

the maximization of

LCDIY) - f(AID.Y) dA,

which is the marginal likelihood of D. He suggests the use of the DI algorithm

with numerioal integration with respect to A above. For another set of the

prior* he also suggests the same alsoritbm to perform the hyperparameter

estimation.

D Discuss ion.

As for the choice of the likelihood all the authors but long started with

the sample dispersion matrix. This is due to the fact that m is of no interest

in typical applications. Bowvr, as shown in the posterior distribution of

Wong's method, the posterior distribution based on the likelihood of S. namely.

L , can be obtained as a marginal posterior distribution of the L2 based

IL
posterior distribution. In the limiting case when 9- 1 > zero, it can be

- . . . . . . *-.. .
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shown that with the normal prior of m, the posterior marginal of A and D ( and

CF ) is the product of the isart kernel and the prior of A and D (, and

CF ). Therefore, the method based on seems more general. On the

contrary, the grand mean is so well estimated by the sample mean, it may be

better to exclude m from the set of parameters of interest in order to make the

resulting posterior distribution simple.

The assumption employed in Kaufman and Pross(3973) that the off diagonal

elements of D are not zero is a questionable one. It clearly contradicts the

usual assumption of weak local independence, (2.1.11), or its strong form,

(2.2.5). However, as Kaufmann and Press suggest, it accounts for the

possibility of specification error, that is, if the posterior distribution of D

is not concentrated on the diagonal matrix then it implies that the number of

dimensions specified, r, is too small to explain the covariance structure of

the form in (2.1.9). Therefore, as long as we can evaluate the posterior

distribution of D, the nonzero off-diagonal assumption of D seems to provide

useful Information for determining the nmber of dimensions.

As for the form of prior distribution, the most interesting contrast

exists between Loe's treatment of A and that of Press. That is, while Lee

assumes those elements of A for which we have strong information to be fixed,

Press places strong prior on those elements. Taking the specification error

problem into account, Press' approach seems superior.

Finally, when the posterior distribution is complex, there always exists a

problem of the choice between the exact modal estimate and the approximation of

the posterior distribution by some evaluatable density such as the multivariate

"".'" ; ;idl~i' .i....--,i .ii..iiii|....... ........ . .... .. .. .
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normal distribution. Although the exact evaluation of the (joint) mode

provides an exact value of one indicator of the location of the posterior

distribution, it does not provide the dispersion information at all. On the

other hand. if we approximate the posterior distribution we can have both

location and dispersion information with less accuracy in the sense that those

are the approximations. In face of the complexity of the posterior

distribution this is an open question.

Moab.
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CHAPIMER III

REVIEW OF TIE CIASSICAL F1E FACTOR ANALMIC (FFA) N=.

Model

As stated before the coumn factors f are treated as random latent

variables in the IWA model. This is due to the fact that the IWA model was

developed in close relation to the classical test theory model in which each

subject is often treated as a random observation and the assumption of

normality is to some extent reasonable. However, there are some areas in whioh

it is impossible to have a random sample of subjects, yet the model (2.1.1) -

seems reasonable. Also, the value of f associated with each object, which is

by definition impossible to estimate in the usual statistical sense under the

WFA model, is often needed in many applications. In this chapter a model in

which the common factors are treated as fixed quantities, namely, the Fixed

Factor Analysis (FFA) model, will be reviewed.

The FFA model starts with (2.1.1) and its matrix equivalent form

(3.1.1) Y 1' + FA + U,

or, equivalently,

j) YN-1 + Faj + U(j), J=1,2 ... ,p,

where Y '

[z(l)'Z(2)' (p]
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F- [f .... .f

1 - 2 -

if(l) f(2) f()"

(When we refer to the columns of each matrix we attach parentheses to the

subscript, that is, f ()and f stand ft-z the I column and the it

row of the F matrix. respectively.)

In order to avoid the redundancy of the parametrization the restrictions

(3.1.2) IT ' , O

and

(3.1.3) (1N)F'F where diag(

are enforced. Since these restrictions are the counterparts of (2.1.3) and

(2.1.4) in the RFA model, there still exists the rotational indeterminacy if

Cis identity. The distributional assumption

(3.1.4) NN( 0 d , I J-1.2.... p.

is usually made. The equivalent form of this assumption is

(3.1.5) u N ( 0 , D ), i.1.2....,N i.i.d.

p-

where D is the p x p matrix whose diagonal elements

consist of d a.
n .1

Fro m o (3.1.) ma ndix (3.1.4)t i clear thtteFA"oe seiaett
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the mltivariate regression model with unknown regressor matrix and with

diagonal error dispersion matrix, or to the a-group regression model with

unknown common regressor matrix with heterosohedastic error variances.

(Noviok. et., al. (1972).]

The likelihood of the set of parameters, namely, F, A, a. and D, is given

by

(3.1.6) L 3(m.F.A.DIY)

S1~uJ1E f(] J)aJ#FaJdJ)

-- N/2-~ r'[d/Exp((-l/2d )a I IJ-1 j J

where

Q- (Z(J)-uJl-Fa )'(Z l )- I-F&) 
'

or, equivalently.

(3.1.7) L3(.,F,A.DIY) IDI -W 2 Exp[(-1/2)tr[D-Q],

where

(3.1.8) Q - (Y-S,'-FA)'1Y-1-FA).

As pointed out by Anderson and Rnbin(1956). however, this likelihood is not

bounded above, that is, if any one of the quadratic forms. Q. say, in the

exponent is equal to zero the likelihood goes to infinity. The simplest way to

avoid this problem is to extend the within-variable homosedastioity assumption

(3.1.4) to across-variable homoscedasticity, that is,

(3.1.9) Ulj) NNI0 , dIN N J1.2,....,p.

where d is a scalar comon to all the variables.

-. . . . . .. .." _". . '." ..,,, .';. -. " '..- '. . " -. - . " - .. ." ." ." ." ."".' '. ". "" " "- "" . .-",- .. .- .. • ." " ." . .-. '". .- ..'.. ." , '..- '. -
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IUo LZ under this model with the restrictions (3.1.2) and (3.1.3) with

CI r is liven by the Eckart-Young (1936) decomposition of the data matrix

Y after columa centering. That is, the estimates of uo F, and A are given,

respectively, by the column means of Y matrix, the first r eigen vectors of

TYY'J normalized so as to satisfy (3.1.3), and the first r eigen vectors of the

sample dispersion matrix S normalized so that A'A - L, the eigen value matrix.

This is also the least squares solution for the model (3.1.1) and the resulting

F matrix is equivalent to the first r principal component scores of the matrix

3Y. The distributional assumption (3.1.9), which assumes that all the

variables have equal unique variances, however, seems to be too restrictive

even if the original variables have the same variances. A better way is to

assume either that the unique variances are known or that they are proportional

to some known constants. For example, in case of supposedly unidimensioanl

tests, the assumption that the error variance of each test is proportional to

the length, as in Feldt (1975), may be used.

Another way to avoid the problem is to have replications. Denoting the

th Wk Mk
k replication by Y and the corresponding error term by U

km,2,...,q, the likelihood of the parameters given q replications is expressed

as

(3.1.10) L3 (.lF,A,DIY() y(2) y yq))

= DI-qN/2Ezpt(-1/2)trID-1Q+] ],

where

(3.1.11) Q+= ql Q(k) 1

.. . . . . . . .. . . . . . . . . .. .1

. . . . . . . . . . . .. . . . . . .

. . . . . . . . . . . . . .- -.
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a2nd

(3.1.12) Q (Y k_lm,'-FA)(Y km-FA).

Since the diagonal elements of Q+ cannot be zero (assuming each Y is

distinct) the likelihood is bounded above. The following estimating equations

are given by taking the derivatives of the likelihood plus the Lagrange term to

enforce (3.1.3) with Cf=Ir ,

C

tr[(FIF - (N)IN)L I.

where L is the r x r symmetric unknown matrix,

and setting then equal to zero. (See the Appendix for matrix differentiation.)

(3.1.13) _n = (W/N)YI.

where Y (l/q) 1 [ y(k) ].

(3.1.14) D = (l/qN)dia&(Q+).

(3.1.13) A - (I/N)Y".TF.

-1 -1 -
(3.1.16) F =YJY A(A'D A+Le)

The last two equations reduce to

(3.1.17) RD-112AT = D-1/2AIL,

where

R U/) D-1/2 YI D-1/2
I = (1/N) D-12"Y'D -1 2

L is a r x r arbitrary diagonal matrix,

and T is a r x r arbitrary orthonormal matrix,

and

* . . .. a

...-,-- ." •'" .---. -- - - • - - "''""". - . , -" "'"- .-..- .'. " " . "- -"-. --..-.. .l
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(3.1.18) FT = N *YD-AL- .

Arbitrarimess of T and L accounts for the orthogonal rotation. Therefore, by

setting T -I the conditional estimate of A given D is given as the eigen
r

vectors of R normalized such that AD-A - L, the eigen values.

Some other treatments of this problem have been proposed in

Anderson and Rnbin(1956). Anderson (1984), and McDonald(1979b). While the

former two consider the estimation of the factor loadings and the error

variances on the basis of the noncentral Wishart distribution with the

restrictions (3.1.2) and (3.1.3) with CF I r  the latter estimates the

factor scores as well as the factor loadings and the error variances by

maxlimizing the likelihood ratio. However, the method fails to produce unique

estimates of the factor scores in the sense that all the estimates that are

produced by the Guttman/lestelman formula in the Appendix also maximize the

likelihood ratio.

A Bayesian treatment of this model will be proposed in the next Chapter.

The Congeneric Test Model

Consider the situation in which an instructor is to grade his/her students

on the basis of, say, three examinations such as two midterms and one final.

This is usually done by calculating a certain composite score such as

A) mean of raw scores,

or

B) man of standardized scores.
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When we assume that there is only one coamn factor, that is, r - 1, the

FFA model becomes, by denoting the first column of F and A by f and a,

respectively,

(3.2.1) Y 1.' + fal + U,

or

y mj + faj + u i-1,2,....N, j=1,2,...,p,Yij j

which states, as in the general case, that the observed score is the sum of

non-random and random parts, namely, mj+fiaj and uij, respectively,

with a particular structure being enforced on the non-random part. However,

the way we decompose the observed score into two parts is not unique. As

pointed out by Lord and Novick 1968, Chapters 2 and 24, we can have another

decomposition, namely, the classical test theoretic decomposition,

(3.2.2) y.1 = t.. + ei.' i=1,2,....N, j=1,2,....,p,

where t is defined as a non-random part over the propensity distribution,

ij

i.e., replications. These two decompositions sometimes contradict each other

since the factor analytic decomposition is usually made without any reference

to the replications. That is, the unique score in the factor analytic

decomposition may contain some of the non-random elements, namely, the specific

score of each variable defined over replications. However, when we deal with

only one set of observations, Y, it is impossible to distinguish the specific

score from the unique score. Therefore, we proceed for the present as if the

specific scores are zero.

With this understanding in mind (3.2.1) states that the non-random part of

the observed score of each test, the true score, is linearly related to each
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(4.2.17) LD, )JI~ LDJ I + const..

where

(4.2.A8) LDj, -n ln(s/2) + 2 In Gamma(n/2) + (n+2) in d. + s/d..

For the second stage prior distributions we only assume the mutual

independence

(4.2.19) f( H S )=f( HF, HA, HtD 1 S)

f( I SF) f(HA ISA) f( %1%).

and do not elaborate the specific form until it becomes necessary. When a

priori zeros are to be specified they should be so specified here. The easiest

way is to assume a spike function as the second stage prior distribution of the

hyperparameters whose elements are assumed to be concentrated around zero.

Posterior Joint Distribution

Using the Bayes' theorem the posterior joint distribution of F, A. D, and

H is given as

(4.3.1) f( F, A. D, H I S. Y ) = f(YIF.A,D) f(F.A,DIH) f(HIS).

Minus twice the log of this density is given by

(4.3.2) L = LFAI +  + LA + LD' + L + const.

= iN [ LA i + IF, I + LA + LD +  + + ost~ ~ H 1  +L +L~+ll€onst,

= jfl [ L FAJ + LAj + Ij + + LH + const,

where

(4.3.3) tr( Y-FA' )D7'( Y-FA' )' + N In IDI,
(3) AD
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(4.2.11) f( D RHD)1 . f( d H D J-1 i

where

(4.2.12) f( d. I ) (s/2) n/2/Gmma(n/2) d 
- 1/2 ) (n+2 ) o

J

z Exp[ (-112)s/d 1I, j1.2,....p.

where Gam1a(x) is the gam function.

Note that f and a. which do not have any subscript or which do have subscript

k, are not parameters but hyperparameters.

The corresponding minus twice the log densities are,

(4.2.13) JF " N Li ] + const.,

where

(4.2.14) L.in Ic I + _i'CFlfi

if globally exchangeable, i=1,2,..., N.

- in ICFk + i i -

if locally exchangeable and i belongs to subgroup k, k-l,.....

(4.2.15)L = Vi [ LA + const..

where

(4.2.16) L = In lc I + (a.-a)'C l(aj-a),
Aj CA -J- A-

if globally exchangeable. J-l,2..... p,

win Ic I + (a- P)' (a--a)
Ak -J-!k A -J-=k'

if locally exchangeable and J belongs to subgroup k, k=1.2....,G A '

Ai

...................................

.........................................
• "" ".".-" ."-'- .- --' "'.i '- - "."...-..........".-...-""..-.-.."""-....."....".".-",..""'
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on the first dimension, and the members of the second group have high loadings

on the second dimension, we may specify that a and a are concentrated

around (a ,0] and [0,a 2 2 ], respectively. This is a similar treatment of a

11'2

priori zeros described in Rubin and Thayer (1982) but more general in the sense

that this does not force the parameters to be zero, avoiding a potential

specification error.

The density functions are, respectively,

(4.2.7) f( FI )- f( f )]

where

(4.2.8) Vf( 1I

.. ICFI - 1/2 Ezp[(-1/2)>i,9lfi] ,

if globally exchangeable, i-l,2 .... N,

. - 1 / 2 Ep[(-1/2)(f f -1 (f 
""

C~k i--k Ci -"I--

if locally exchangeable and i belongs to subgroup k, k-l.2,.....,.

(4.2.9) f( A I H ) 1
[ f( a I F ) H

A J-l -J A

where

(4.2.10) f( aI HA

Ic 12 Exp[(-1/2)(a -!)'C (a -a)],
CA - A j-

if globally exchangeable, J-l,2,.... p,

ICAfk-1/2  exp((-l2)( e aj-) e su&bru- k)].

If locally exhaneable and j belons to subroup k. kl,2..... GA ,
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(4.2.6) aj N( ak," C~ ) iid, if j belongs to group k',

km=l,2,D... .GA. '

where ak, and CAk , are, respectively, r x 1 and r x r.

In this case we have

B- [ k C _ k  ), k-1.2 .... ,%

and

HA Ik V M ). k-l.2 ..... GA 1.

A locally exchangeable prior distribution for the error variance is not

considered here since in real application they can almost always be considered

to be globally exchangeable. We denote the number of observations in the k
th

locally exchangeable group by nk and the number of variables in the k
'th

locally exchangeable group by nM,. It should be noted that (4.2.5) and

(4.3.6) can be used independently. That is, for example, we may have a

globally exchangeable prior on the factor scores and a locally exchangeable

prior on the factor loadings. Also, by setting one of the inverse matrices of

the dispersion hyperparameters equal to zero, we can handle those

observations/variables whose a priori grouping information is not clear. That

is, those observations/variables with zero precision hyperparameter matrix are

treated as having uniform prior distributions.

When some of the location hyperparameters are assumed to be concentrated

around zero we may specify this in the specification of the second stage prior

distribution. For example, if there are two locally exchangeable group- af the

variables and we believe that the members of the first group have high loadings

..-........... ,-.-. .. _ .....-..........-.-......-.........-..........-...... '2
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dispersion matrix.

(4.2.3) a : N( a. C )11,2.,pc iid.
r - A "" jid"

where a is the r x 1 vector of mean and CA is the r z r

dispersion matrix,

(4.2.4) d -2 n , s

where I n.s ) indicates the inverted chi square distribution

with the degrees of freedom n and mean s/(n-2).

With the previous notation we have
E- t f. J.2

A A, H"'m

HA - t a. CA l

and

-[n. a].

The three sets of prior distributions, respectively, state that all the factor

scores, factor loadings, and the error variances are globally exchangeable. -

Since the model is based on colum centered data and considering the

mltiplicative redundancy between F and A. we set f- r and CFIr The

treatmunt of the oblique model will be stated later.

When the globally exehangeable prior distributions are not appropriate we

may use the locally exchangeable prior distributions:

(4.2.5) f : N ( f k CFk lid, if i belongs to group k,

where f and are, respectively, r x 1 and r x r,
-k CFk

.-.
..... .. *.*'.*.*



variables require heavy knowledge of vocabulary and the rest are more content

oriented we my a priori assume that there are two locally exchangeable groups

of variables. Also. if we believe that there are some gender differences in

torus of the factor scores but that the factor loadings are invariant across

sex, we may assunm the exchangeability of factor scores within boys and girls,

but not globally. The model proposed here is general enough to handle any of

these situation. --

We consider the following forms for the prior distributions of the

parameters.

(4.2.1) f( F. A. D I H ) - f(FIH) f(AIHA) f(DI B)-

where E, HA. and are the first stage hyperparameters of the prior

distribution of F, A, and D, respectively. Th independence assumption of F

and (A, D) seems to be natural since knowledge of the characteristics of each

subject usually does not affect knowledge of the characteristics of variables.

The independence of A and D may not seen to represent the real situation

considering the fact that the expected dispersion matrix of the observation is

expressed as the sum of AA' and D, but this is not the case since the prior

distributions are to be specified prior to the data collection. That is, we

argue that A and D are independent until we calculate the sample dispersion

matr ix.

For each component we first assume the following globally exchangeable

prior distributions:

(4.2.2) fi N fo ,#..o.id
.r - CF ) i1,2,...,N, ld,

where f is the r x 1 vector of mean and CF is the r x r

-

o-*1

"" .........-".."..".-......, . . . .................. ..................'"2' "''".-.--"-".."..-"..."-"'' ""....." .... " ..i"2"2""-
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the formulas the range is not specified. The second stage hyperparameter S is

typically specified to provide a relatively flat prior distribution for the H,

expressing ignorance about the location. This type of prior distribution is

called an exchangeable prior distibutioo. It should be noted that the first

stage hyperparameters H can be constant if the distribution of H is really

tight.

As a variation of the exchangeable prior presented above, we may have the

following locally exchangeable prior.

P k f( Pk IH ) iid, if k belongs to a subset S,

H f( H I S ), g 1,2,...,G, iid.

9 9

That is, we divide k parameters into 0 subsets and assume the exchangeability

within each subset. Since the exchangeability assumption is crucial in real

data analysis much caution should be exceroized when it is incorporated.

In the factor analytic context there are N individuals, each of which is

regarded as a population, and the location f of each individual is to be

estimated. Also, each of the p variables represents p populations and their

parameters a 's and d s are to be estimated. Unless we are to perform

-j j

some confirmatory study it is often difficult to specify the informative prior

distributions for all of N+(r+l)p parameters. Also, it is often the case that

we know that some of the tests or some of the subjects are very similar to each

other prior to data collection. Therefore, the exchangeable prior seems to fit

the typical application of the model very well. For example, if all the

variables to be analyzed are supposed to measure reading skills we may a priori

assume that those variables are exchangeable. However, if half of the

.- -. - -......... ....... . -...-............ ./..-.....,.......-........ .,..-.-.-. ..-. .. ....
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that is proper. Second, if we have very weak knowledge we use a noninformative

prior distribution that is improper. The third case is that of an exchangeable

prior distribution and is applicable when there are several of parameters which

represent the same characteristics, say, location, of different populations and

we believe those parameters are similar to each other. For example, when the

means of m normal populations are to be estimated, we nay know, a priori, that

those a values are similar to each other but may not be able to precisely

specify the 'moan' of these a values.

The relative similarity of prior values can be expressed as the following

hierarchical forms. According to the model stated above it is assumed that

f( Pk I H ), k'm1.2o...,m, iid,

H f H S),

where P i[ pt. P ...., P ]  is the a x I parameter vector of interest, -

H is the nl z I first stage hyperparaneter vector and S is the n2 x 1 second

stage hyperparameter for the prior parameter H.

That is, we express the relative similarity of all parameters by assuming

that they come from the same distribution and express the uncertainty of that

distribution by the probabilistic structure of the hyporparameters. TM prior

distribution of the Pk's can be expressed without using H if we marginalize

the Joint distribution of P and H with respect to H. In this case the prior

distribution of P can be written as

( P I S) f f( P I H ) f( H I S Md.

Since it is usually the case that n2 < l ( a, it should be easier to specify

the prior constant S. It should be understood that the range of integrations

is the domain of the variables to be integrated out. To avoid complexity In
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f( j) I F. A, D) f( (j) IF, aj, dj )

(-1/2 )N

x Exp( (-1/2) (j(J)-Fj)'(Z(j-F-j )/d 1.

Here, the symbol m= is again used to denote the proportionality.

Minus twice the loS likelihood is

(4.1.5) LA D -- 2 In fl Y IF, A, D)

- tr( Y-FA' )D 1 1 Y-FA' ) + N In IDI + const.

- 1!11 Li I + N In IDI + coust.,

where

LAFi (Yi i)'D (-1 i )

- LFA] + N in IDI + const.,

where

LVAj (Z(j)-FaJ)('Z(j)-Fj)/dJ•

In the following sections the subscript I always refers to the observations,

and the subscript j to the variables.

Prior Distributions

In general there are three ways to ezpress our prior beliefs about the

parameters of interest in a Bayesian estimation procedure. First, if we have

strong knowledge of the parameters we use an informative prior distribution

- . .* *. ~ .. . ... -.- .... ,. . . . . . . . . . . . . . . .. o'
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where

1 (J) is the N x I vector of ceatered observations for the variable j.

is the N x 1 vector or the error tems for the variable J,

F - f f f 1' is the N x r fator soore natriz.

Collectively, we may write,

(4.1.3) Y - F A' + U,

where

- Z(11 Z(2)' (p) )

in[Zl. y2. ZN', Nxp.

Ub

- uS2..., t', Nxp.
L1, 42

Therefore, the likelihood of F, A, and D given Y can be written as

(4.1.4) f( Y F, A. D)-
( 1/2)N---

IDI (-1/2)N Ep( (-1/2) tr[ (Y-FA')D-C(Y-FA')' I )

== 1[ f(i F. A. D )1.

where

( zi IF. A. D -t( Z f I f1, A, D)

- ID1-1/2

J-11

- ee( IF A.iD- -_ i )

where

..... .... ./. .......- ,. .. . ..........- ,,.. .,..-,-..%' '.' '.".'. •, .- ... . . ..
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a-(lIN)Yrl-N'

and do not treat it as a model parameter in order to have simpler forn.

Therefore, it should be understood that the observations are centered, i.e.,

each observed variable has a zero sample man.

Te state the model as follows.

(4.1.1) yi Ali + ui, i=1,2....,N.

N 0 D. il,2...,N, iid.
p -p

where

Zi is the p x 1 vector of the column centered observations for subject i,

uis the p x 1 vector of the error terms for subject i,

fi , fil fi .. fi ] ', il2...,N, .

is the r x 1 factor score vector for observation i,

A- [ ! , 12. ... , a P
-p

where a = [ ajl, a j2 ... , alr ]. J1,2....,p.

is the r x 1 factor loading vector for the variable J.

is the p x r matrix of the factor loadings,

and

D = dias( d. d2 , .... d ] is the p x p diagonal

dispersion matrix of the error term.

The diagonality of the D matrix enables us to reexpress the model

variable wise as follows.

(4.1.2) Z(j) = Fa I + u(j) J1,2.... ps

!!(J1 NN( 0. d . J-1,2....,p, kid,

. . m* * - . . . . . ..-.. - " * -N-.'
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CMAIR IV

THE BAYESIAN FACTOR ANALYSIS

In this chapter a now Bayesian factor analytic model, where the factor

scores as well as the factor loadings and the error variances are treated as

one of the parameters to be estimated, is developed. The presentation is fully

Bayesian in the sense that all the parameters have prior distributions and the

inference is based on their posterior distributions. After the description of

the model and the prior distributions the posterior joint distribution of all

the parameters is derived. Then, the joint distribution is marginalized and/or

conditionalized to obtain the point estimates. This enables us to reduce the

factor score indeterminacy problem to the usual problem of the choice of point

estimate, namely, mean, mode, or something else of the posterior distribution

of the factor scores. Because the EN algoriti. and its variatinos are used for

the marginalization of the posterior Joint distribution a brief description of

the algorithm is provided after the derivation of the posterior distribution.

The Model

In this chapter a model similar to the one used in the fixed factor

analysis is used. Since m is defined as the grand mean we replace it by the

sample mean, namely,

,, "', , ~........ .,,......b,.............................................. ..... 1
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section. Thus, within the framework of WLE it is impossible to estimate the

parameters of the general congeneric model. Soon modifications such as the

across test homoscedasticity in (3.1.9) or

(3.2.7) a.., 1, j-1.2,...,p,J

and dj is proportional to the observed score variance

of test j,

are necessary to deal with the form more general than the parallel test model.

With the former assumption, with some restrictions concerning the scale and the

origin of the true score such as (3.1.2) and (3.1.3). we have the first oigen

vector of JMYJ as the NE of f, and with the latter, we have B).

Therefore, if we are to calculate a composite score based on the general

congeneric test model, the Bayesian unidimensional FFA model proposed in the

next chapter is the only possible way. It should be also noted that

Lindley(1971a) has proposed a Bayesian solution to the parallel test model with

an exchangeable prior distribution of the factor score.
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other. This is sometimes referred to the congeneric test model, Kristof(1974),

Feldt(1975), and contains the parallel test model or the tau-equivalent test

model as a special case. That is, if all the a's are equal we have the

essentially tau-equivalent test model, if, in addition, all the a's are equal

we have the tau-equivalent test model, and if, in addition, all the unique

variances are equal we have the parallel test model. Although classical test

theory does not assume the strong form of the distributional assumption nor

within test homoscedastisity such as

(3.2.3) uij N(O , d ), i=1,2,...N, j=1,2.....p,
ij j

we assume this to facilitate the comparison. This assumption, which specifies

the characteristic of the error term associated with each test, does not seem

to be strong compared to the normality assumption of each subject's true score

used in the WFA model.

With assumption (3.2.3) and the parallel test assumption,

(3.2.4) a - 0, j-1,2 ..... p,

(3.2.5) a = 1, J-1.2,....p,

and

(3.2.6) d = d, Jul,2,...,p,

it can be shown that the bILE of the factor score is given by A) in the example

above.

However, if we allow the unique variance to vary freely in order to deal

with the tau-equivalent models it can be shown that the WE does not exist even

with the restrictions (3.2.4) and (3.2.5). This is due to the same

unboundedness of the L3 likelihood function described in the previous

• . ,..., . . . . .....-.... . ..... .... ,.....- .-. -. ,-,.. ,, - -, ,.--..-
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(4.3.4) L

" ~~~(4.3.5) L,jA- (,y(j)-Faj)(~)Fj/ J

(4.3.6) L- ( b 1.

(4.3.7) LDJ Lj, + N In d.

aLa -n ln(s12) + 2 In Gaama(n12) + (N+n+2) In d + s/dis

and

(4.3.8) Lf =-2 In f( H I S ).

Unlike the L3 likelihood in Chapter III the posterior joint distribution is

not unbounded above due to the term s/d introduced by the prior distribution

of the error variance. However, it is found that, unless we have the value of

s which is comparable to the magnitude of the residual sun of squares,

RSSj -Fa )'( -Fa

the Joint mode of (4.3.1) exists in the region where some of the error

variances are close to zero.

Note that (4.3.1) also gives various conditional distributions by droping

the factors which consist purely of the paramters/hyperparamters on which we

would like to condition. In terms of (4.3.2). minus twice the log posterior

conditional distribution of, for example, the factor scores and the factor

loadings given the error variances and the hyperpara-eters is given by

LD4+L+L A- +onst.



1bsterior Marginal Distributions

When the globally exchangeable prior is used either for the factor scores

or for the factor loadings, following two marginal distributions can be derived

analytically.

(4.4.1) V(F, D. HIS.Y)ffV(F. AD, HIS, Y f(AIS dA

ff(IF,,D~(AIA)dA f(FIHF)f(DIOD)f(HIS)

=j~ IF F'~I 0/2 x
'I-i A i N

(4.4.2) V(A. D, HI S Y =ff( F. ,AD,HIS, Y f(FIS d F

=ff(YIF,A,D)f(FIHF)dF f(AIHA)f(DI%)f(HIS)

=I ACFA' + D (-/)Ep((-1/2) tr( Y'Y D71 ))

Also, with the globally exchangeable prior of the error variances, we have

(4.4.3) f( F, A, H I S, Y f f( F, A, D. H IS, Y )d D

p I'~ (RSS + s)-(Nn1

m/2
x p (s/2)' Gama((N+n)/2) / Oamaa(n12)

x f(FIHF.) f(AIHA) M(IS), -

where RSS -. ()Fa)(()Fa)

and Gamma(x) is the Gamms function.

Ibte that the posterior marginal distribution of A, D. and H is
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essentially equivalent to the familiar likelihood on which the usual ME is

based. In this sense our approach includes both the random and the fixed

factor analytic model reviewed in the previous chapters.

Theoretically, when we are interested in the estimation of the factor

scores and the factor loadings we may be able to use the joint mode of the

marginal distribution of the factor scores and the factor loadings as the point

estimates. However, since the distribution given in (4.3.3) has the same

tendency as the joint posterior distribution given in (4.3.1). it is not

desirable to use the mode of (4.3.3) as the estimate. That is, the mode is

close to the region where some of the dj s are zero. (It can be shown that

(4.4.1) also has the same characteristic.) On the other hand, the marginal

distributions given in (4.4.1) and (4.4.2). contain the location parameter F or

A and the scale parameter D together. Therefore, the modes of these densities

are, in this sense, still Joint modes ( e.g. (F,D) or (AoD)) and suffer the

criticism of O'Hagan (1976), or Fienberg (1972). Also, Rubin and Thayer

(1982), who derived the WE from the equivalent likelihood, note that

'estimation of variances should be from their marginal likelihood.' The point

is that the joint mode or the joint ILE tends to underestimate the error

variances due to the lack of degrees of freedom adjustment, often resulting in

the Heywood case. Therefore, some additional marginalization is necessary.

Since we have the hyperparamoters in the posterior distribution we first

marginalize all the parameters in order to have point estimates of the

hyperparameters. That is, the point estimates of the hyperparameters are given

by the mode of

(4.4.4) f( H I S. Y ) f f( F. A, D. H S, Y )dF dA dD.

_................. .. . .".. .
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Then. conditioned on the obtained values of the hyperparameters, the point

estimate of the error variance is derived as the mode of

(4.4.5) f( DI, S. Y) f ff( F, A. DI B, Y dF dA.

Then, conditioned on the point estimates of the error variances and the

hyperparameters, we estimate the factor scores and the factor loadings as the

mode of

(4.4.6) f( F, A ID. H. S. Y )

(4.4.7) f(FID, H. S. Y f f(F, A D.H. S. Y dA.

or

(4.4.8) f( AID.H. S. Y f f( F.A D.HBS. Y dF.

As O'Kagan (1976) noted, the above conditional modes are considered to be

better estimate than the marginal mode. When the main interest of the analysis

is the estimation of the factor loadings. the mode of (4.4.8) should be used.

When the main interest of the analysis is the estimation of the factor scores

the mode of (4.4.7) should be used. Finally, if both are of interest the mode

of (4.4.6) should be used.

Since analytic marginalization is impossible we use some variations of the

EM algorithm, Dempster, et. al. (1977), in the later section. A brief

descriptions of the EN algorithm and its variations are presented in the next

section.

The EN Algorithm and Its Variations

Given a set of random variables Cu v and their joint density

function, f( u,! 2 ),,where, 2 is the parameter which determines the density,
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the E algorithm can be used to find the maximum likelihood estimate (iE) of p

on the basis of the marginalized likelihood

S(_R I p f f(u, v dv.

In the original article by Dempster, et.al.(1977). a set C u, v ) is refered to

complete data, u, incomplete data, and v, missing data. The terminology makes

sense when v represents the portion of observations which are missing but in

more general applications it should be understood that the random variables to

be integrated out are refered to as missing data. ( See the following

axsmples.) The algorithm is an iterative process consisting of two steps,

namely, the E-step and the *-step. Assuming that an estimate of 2, say. 0 .

is given, for each iteration the E-step calculates the conditional expectation

of In( f( u,v 1 ) given v and po. namely,

Ev(uIp) I ln(flu.vp))f(vlu,2 0 ) dv.

and in the *-step EV(u lp) is maximized with respect to p assuming the

parameters of the conditional distribution of v, sayv are constant. That

is, although the parameter v , which is a function of u. and 20, is

included in EHv(up) it is treated as a constant when the derivative of EV

is taken. Notation such as EVe(uIp) should not be confused with the simple

expectation sign E[.]. The successive application of these two steps will

usually result in the MA of the marginal likelihood s(uip) when the process

converges. It is assumed that some initial value of L is given prior to the

* . . . o , ... e . . . , q ,. •, .
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iteration. See Wu (1983) for the conditions required for the convergence.

When the complete data has the distribution which belongs to the regular

exponential family the conditional expectation of the sufficient statistics,

t(u,v), may be used for the calculation since the log likelihood can be writen

as

In fV v12) L't(uv) + In a(p) + const.,

where a(p) is a function of p only,

and const. is a constant term which does not include p.

When p has a prior distribution, f(pLH). the EN algorithm can be used to -
-..

find the posterior mode of

g(p I u . ) - f f( 2, ! 1 u. B) dv

f= fl~u,vl2)dv f(pln).

In this case, the E-step calculates the conditional expectation with respect to

f(v!.,H). that is,

EV(p2lu.H) = f lnf(u,v!I)lf(vlu.2.H)dv,

and the *-stop maximizes this with respect to p treating the parameter of the

conditional distribution of v as a constant. When the process converges we

presume to have the posterior marginal mode of p with v integrated out.

Now, suppose we have an observation Y. whose distribution is described by

f(YIP). and a hierarchical prior distribution of P of the form f(PIH)f(HIS).

where H is the first stage hyperparameter, and S. the second stage
.r

hyperparmtor. The posterior joint distribution of P and H is given by

.. . . . . .. . .. .. .. . . . . . .- . .-. . . *. *. .- .~.. .. .. . . *. . ,. . . .. .. -.-... ,.......::
.".:, . : --') ;'2 ". -" _ -." :. _:" . ; "'. ". " ' "L"."" -. ,'- -:-. "- :. .--.-... ,.- , :.-. ." .. . --.- _- •-, * - -
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f( P. H I S ) - f(YIP) f(PIH) f(HIS).

and, the posterior marginal distribution of H with P integrated out by

s( H I S ) - f f(PHIs) dP.

In order to estimate the modal value of H of the marginal posterior

distribution g, we can also use the EN algorithm by identifying

Y. v' = P. and 2 H.

When the minimization of minus (twice) the log likelihood is preferred to

the maximization due to its simplicity, its expectation,

EV(uIp) - (-2) f lnf(u,vl)f(vlu,2 )dv. should be calculated in the

E-step and, in the *-step, it should be minimized with respect to p.

One of the advantages of the El algorithm over the direct maximization of

g(ull) is its simplicity. In the usual application, where (u.v) have

mnltivariate normal distribution, EV is much easier to work with. That is,

the maximization can be done analytically. Another advantage is its

flexibility. Beck and Aitkin (1981) used its variation in order to have

marginal NZ of the item parameters under the latent trait model where the

conditional expectation of v is plugged into the complete log likelihood

instead of taking its expectation. We propose another variation in order to

marginalize with respect to several sets of missing data, say. 1 . ....

in the later section.

In the following examples the actual application of the Olf algorithm will

be explained. The first example is a straightforward one where some of the

observations are missing. The second example shows how we treat a subset of ."

the parameters as the missing observations.

-----------------------------------------------
..-- ~-'....-..

.-. *.* *.* *'
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Efample 1: Estimation of Multivariate Normal Parameters

Let Z be the n x p data matrix containing n observations from

N ( m W). Now, assme a part of Z is missing. That is, let

z= x'
-- 1

71 ..

E2 .

X,

,y2'

where nunl+n2, and

Ei' i1.s2s...,n 1 v be p x 1 vector of observation,

S,2..... 2 , be p x I vector where

• . ii ]

aI . i-1,2,...,n2, and bit i1,2,...,n2, area

respectively, pl x 1 and p2 x I vectors and pupl+p2.

It should be understood that b,'s are missing.

With the notation used in the previous section, we have,



58

a= [ 11i, i=,2.....alo and ai, i1,2....,n2 1,

- [ bi. il1,2...,n2 1,

and

2 m and V.

and we would like to estimate a and V on the basis of

the marginal likelihood

S( XZai 11.2.....n2 1 _.V ) f f( Z I W ) d b.

See Orchard and Woodbury (1972) for theoretical basis of this method.
S.q

Now, minus twice the log likelihood of (ml) given Z, the complete data, is

L n laliI + (z (iu + coast.

The E-step.

1. Conditional Distribution of bi's given X and A.

The conditional distribution of bi given X and a is

bi I A N 92(b, V ),

where

* -1-0i-2 + Y2iI(au-)

V 22 W21 11 12'

where

1 x pl 1x p2

I
. "..."

.' -' ' ' -'- - - " " ' ' v . " " ' ' '- . - , . -.' ' ' ' ' ' '- .- .-.- '- ' .-. . ', .-.-. '. - ' ..... -. ' . " , " ' ' ' '. , , " ," . . " , " , ' ' , - ., .
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and

VF Wll, W12 '

2. Conditional Expectation of -2 log likelihood.

With obvious notation

1i1 [WI:: W12]

the i term in the sumation which includes bi can be

decomposed as

-1,2

" ( -* .1 !_)":

+ (b,--_ PI b,_-u2 )

Therefore, the conditional expectation of Q is

+ 2 (a I )'W21( b:-w )

0(;! ).W22(

..-.. + b. -. 02.. . . . . . . . . - . . . .
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+ trV2 2 V

-1 *

IL-m' CUE) t+ 22*

where a ,' bl' "

(So Appendix for the expectation of quadratic form.)

Therefore,

E( L 1 1. _i-2.....n2 ) - m.V I X.A )

N (yi--)W Cy-.),,

+n2 trW2 2v + const.

he N-stop

By differentiating EB( mW X , a i .i =1 , 2 ...... n2 )

with respect to m and Vl . ij- 11, 12, and 22.

( set the Appendix for the Matrix Differentiation, )

and solving the resulting normal equations, we have

+ C
- (11n)[ 1'. Y 1 1

-n

W (1/n) C ij 11. 12, and 21,

iJ i

and
4.. °

W22 (1/0) C22 + n2 V )

where C is the sample mean corrected sum of squares and cross product

'. "...-, ..i.?.,..'-... . .-. . -.. . . . . . . . . ,.-.. . . . . ... •. . -
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matrix and C ij's are its partition similar to the one for W.

Note that b s and V are treated as constants when taking the

derivatives. The successive application of these two steps will results in the

+

marginal MLE of a and W with the missing data integrated out, namely, En and

W+ , at the convergence point.

!xaMl@ 2: Two-Way Random Effect ANDVA without Interaction

Let us consider the two way random effect ANDVA model without

interact ions.

Yij = al + + eij i1,2,....p, 1l,2,...,q,

where

e ij :N( 0. a E  ),i 2. .. p =1,2 .... ,q, lid,

ai  N( m, sA 1 i-1,p2 .... ,p, iid,.'.

and

b : N( 0. )s jBl1,2,....q, lid.

Note that the overall mean is taken care of by the mean of parameters, all

namely, m. Also, to avoid the complexity, no replication is made.

Writing the model using the linear regression form, we have

where

= [ Yl' Y12 ' .. Ylq' Y2l . Ypq ] . pq z 1,

• = ell, e12, .... elq, e2 1 .... *pq 21. pq x 1,

2. . ...-,"-..-'. ... .. -. .....-'-".---,---...... ,.--.....-....-.-. -
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X1 1 I
-q q

-q q ::

1 I , pq x (p+q).-q q

I a'. b' ]'. (p+q) z 1.

a [ a1 , a2 ... , a ]. p 1 1,p ",

b=b b ..... b . q x 1.- 1 2' q

:N ma.C)P+q-

I = [ m.1' 0 ' I', (p+q) 1,
-p -

a~l I (p+q) x (p+q)..i

By integrating out analytically. we see that z has the pq-variate normal

distribution with

mean of Yij M'

and

Gov( YijYkl )mdksA +dlsB + dkdjlE.

where dij is the ]ronecker's delta notation.

Instead of working directly on the marginal likelihood implied above, we

proceed as follows.

Let us assume that [ ', I is the complete data and is the missing

S. . .. . . . . . - . . .. .. .
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part. That is

_ . _v' , and 2 - [A' , SE. andm ,

Minus twice the log likelihood of the complete data is

L = pq In(sE) + ( rX )1 r-X ) / E

+ in Idl + ( l )'C-1( -_ ) + const.

The E-step

1. Conditional Distribution of f given ""

By rearranging two quadratic forms we see that

S Cfi I : Np+q( v ).-

where

V= + -I, lx -

and

V -1 X Y+C-1a*.v* (sX'z+C a-=_). -'

[a b b . ], say.

C See the completion of sum of squares trick in the Appendix. )

2. Conditional Expectation of L given .

E( LI z ) EP( sA'B'E

=pq In( ) + (r-!(-4 +)/ + trXXV /S

+ In ICI + (o-m)'C 1 (p-m) + trCV + const

- pq ln(s E ) + ( r-X# )'(y-X )+trX'XV /s E
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and

-j-

Therefore, conditioned on jl dip H. and S. we have

(4.6.3.3.) a D, H, S, Y Nrj *
i r ...

and these conditional distributions are independent for j=l,2,...,p. The joint

density is denoted by f ( A I D. H, S, Y ). which is the product of each

normal density in (4.6.3.3). When some of the elements of D is zero the

calculation of Q J 's should be performed using the matrix inversion formula

2 in the Appendix.

As we noted, depending on the method of quasi marginalization, we can

either take the expectation of EF(A.DoHIS,Y) with respect to the conditional

distribution of A or we can analytically integrate A out. First we consider

taking the expectation of E .,

(4.6.3.4) E AF(D,IIISY) = f F(AD,HIS.Y) f (AIDoH,S,Y) d A

=l[ f" (LFAj+LAj+NjV aj) daj ]

+ + LD + L + coust,

a. C C C * -@L

= l( RSS. +tr[(F 'F +N V )Q.]J J :

+ Na Va )/djaj aj j.

+ LA. + LFS + LD + LH + const.,

where
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Now consider EF( A, D, H I S. Y ) in (4.6.2.1) as minus twice the log

posterior density of A, D, and H given S and Y and denote the density by

0
f (A.DHIS.Y). Then, by writing variable wise, we have

(4.6.3.1) EFI A. DO H I S. Y )

- (18*s + Naj'v'a)/d + L 1

j -jJ Aj

+ LF. + LD + S, + const,

where

RS J 0 ( ylj)-F aj )'I ylj)-F a- i

Again using the projection operator trick 1 and the sum of squares

trick in the Appendix twice, we have

0
(4.6.3.2) 'VAj, + LAj + N aj'V aj/d

--1.

-(a-a)'Q (a -a.)
-i -Jij -i -3

+ a+F 'F a +d + a

-J -iiJ C

-a /dip-j aj j+ '(j) )d

where

= RSS. / d.,
VAJO J J

(1/d )F *F * +CAI+(N/dj)Ve
j J )

=Q;( (1/d F' , C- a),
j j (j) CA-

P IN- F (F 'F *',

1-

*. .*. .-.



75

where

(fi-k) 'Cl (fi-fk )

+ uktr - 0 + .,ii ln I.

The sign i*k denotes the sum over those i's which belong to subgroup k.

In this case, the quantities to be stored are

(4626 -1 -1 *
(4.6..6) VF: (Xzkk'%Wyk'YkD A)Vk.

and

(4.6.2.7)F =V AD Yk'Y D-1A
kk Vk Ykk

-1 -1 -1 -1
+ DZ+kfk'CFk + CFk-'+kD A

+ DFkWALCik ]VkD

where

Y+k =  i~k[ Yi )

Therefore, Z+k and Yk'k, k-l,2 .... are sufficient in order to

estimate the factor score weight.

Also, all the expressions in the following sections which contain the term

N V must be corrected in the similar manner as (4.6.2.5) as well as LF,.

QCuasi Marginalization with respect to the Factor Loadings

. . .... . . . . . . . . . . . . . . . . ....... . . . ..% ++ -% "." =° " m"""" "*""" + ."-
•

-"-" "
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inversion formula 1 in the Appendix. (See Technical Notes section below.) As

noted before in the example of the EM algorithm, the tLE by the EM algorithm

does not produce negative estimates of the error variances since the V

matrix is positive semi definite.

Also, since F always appears as Y'F and F 'F it is not

necessary to store all the factor score estimates. That is,

(4.6.2.2) Y'F = Y'Y D A V

and

C C C -l D-l C
(4.6.2.3) F 'F =V A' D Y'YD A V ,

Cr

Sjare to be stored in the calculation. With those quantities, RSS in "

(4.6.3.1) can be reexpressed as

(4.6.2.4) RSS = [Y'Y -2[Y'F ]i'at+a '[F 'F s.

In this sense the mean corrected sum of squares and cross product matrix Y'Y is

sufficient for the estimation. ( It is not sufficient for the estimation of

the factor score, but sufficient for the scoring weight W D AV .)

When the locally exchangeable prior is used for the factor scores

(4.6.2.1) should be replaced by

(4.6.2.5) EF( A. D. H I S. ¥ )

TAO+ tr( A'D1lA =1 CF

+ + LA + L0 + ,+ const..

where

L.- X=1 1  .Fk .

. ..
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(4.6.1.5) F I + Y D A V
k =uFkk~V~k k

Then some of the elements of D are zero the calculation of F should be

performed using Lawley's trick in the Appendix.

Conditional Expectation of Minus Twice the Log Posterior Density

From (4.6.1.2) and (4.3.2) we have

(4.6.2.1) EF(AD. H I. S Y) fLf( F IA. D i, S, Y) dF

Ljj i* + Lis + N trA'D71AV*

-1,',

+N trC Cv + NlnICFI + LA + LD + 1 + const.

where

LAI ( )'D-1( ,-Af:

and

= -1

LW,+ N tr[A'D-1AV'3 + A + LD. const.

where

VADO tr( Y - F A' )D1 Y - FA')'.

"-, I i. I + N tr C * + N lnlal

Note that if we minimize this expectation with respect to A and D with

uniform prior of A and D, we have the same estimate as given in Rubin and

Thayer (1982). This can be shown by using Lawley's trick and the matrix

* ...
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(4.6.1.2) f1 If z. A, D. H, S N ( fiV ,

and these conditional distributions are independent for i=1,2,...,N,

The joint density, which is the product of the normal density given above

is denoted by f( F I A, D. II S, Y ).

We also write

C

(4.6.1.3) F Y W.

-1 * ,
where W D AV .

When the locally exchangeable prior is used for the factor scores,

(4.6.1.2) and (4.6.1.3) should be replaced by

(4.6.1.4) fi Vk ( A'D- + k

kthif the observation i belongs to the kg roup,

where

S A.-1 -1'-1

Collectively, we also denote those f, s in (4.6.1.4) as F . If the

observations are arranged suoh that the first nl observations belong to the

group 1, the second nl observations belong to the group 2. and so on, we

write

Y = [ Y" 2' ""' Y ]

and

F - [ F1 1. F2 , .... F 1 '-

The same partition should be used for F so that we may write
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as well as the estimation procedure for the conditional mode of a subset of the

parameters. Unless noted, the use of a globally exchangeable prior

distribution for both the factor scores and the factor loadings is assumed.

Conditional Distribution of F Given A. D. H. S. and Y

By collecting L, and LAF from (4.2.14) and (4.3.4), respectively,

and using the projection operator trick 2 and the sum of squares trick in the

Appendix, we have

(4.6.1.1) L Ai + i

=zP +(!1-! ) AD- 1A(ft

+ -1
+ f,'~lf,+ lnICl.

-i v i v

+ the term not containing fio

where

P-I - DA(A'D A)AD
p

-1Il-1 , -1i
i " (A'D -A) A D - ,..

V* -1 -1 + -1 "V ( A'D- A+C -

and
C Cl

V A'D-1 zi,

Therefore, we have
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where the factor scores, the error variances and the factor

loadings are integrated out in respective order in the E-step.

AFE

where the factor scores and the factor loadings are integrated

out in respective order in the E-step and the error variances

are integrated out analytically after the E-step,

A
ABA

where the factor loadings and the factor scores are integrated

out in respective order in the E-step and the error variances

are integrated out analytically after the E-step,

where the factor scores are integrated out in the E-step

and the factor loadings and the error variances are integrated

out analytically in respective order after the E-step.

Point Estimation

In this section the E-step is first described. First, the derivation of

%AL, R AD)EAF, and A,)AN. where the factor scores are first

marginalized, is presented. The derivation of %.,A n EDEFA. where the

factor loadings are first marginalized, follows. Then, the description of the

M-step, where the mode of the hyperparseters are to be estiuted, is presented
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integrate P2 analytically denotinS the result by f ( H I S, Y 1.

Also, denote its log by A2 Ep( H S, Y ).

P2.
'The *-stop

Maximize Ap2Epl( H S. Y ) with respect to H.

For the next iteration. P2 should be replaced by the mode or the mean of

f (2,HIS,Y). -

Since this variation is different from the one proposed before the

agreement of the results should also support the convergence of those quasi

marginalizat ion schemes.

In the application to factor analysis, we partition the parameter P into

three subsets, namely,

P= [ F, A, D 1.

Therefore, we have many ways to perform the quasi narginalization by changing

the order of integration and the way the parameters are integrated out ( by

analytical method or taking expectation.) In the following section, only six

of them are to be considered. Each of these variations are designated by the

particular form which is to be maximized in the N-step. Namely,

where the factor scores, the factor loadings and the error

variances are integrated out in respective order in the E-step,

%FA

where the factor loadings, the factor scores and the error

variances are integrated out in respective order in the E-step,

.. ~ ..-. . . . . . . . .... ... .... ..-. ... .... ... °--o

* ~. . . . . . . . . . . . .
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the expectation. fhen the E-step is applied in the next iteration, the first

port of Ep1 should be regarded as the complete log likelihood. That it,

when calculating the conditional distribution of PI given P2. H. S and Y. the

values of the function of P2 should be used in place of P2.

The two expectations, Eb21 and Ep2N , are different since the

inclusion of P2 in P1 is neglected in the latter. Also, note

"di E1 but E.2p11<> EP1P2. where Ep1P2 denotes the sam quasi

marginalization scheme with P2 integrated out first. That is, the conditional

expectation is affected by the order of integration. Although we cannot prove

the convergence of this process to the desired marginal mode, to see that the

two different methods, namely, the maximization of Ep2P1 and the maximization

of EpiP2. result in the same solution should support the convergence. If

they do converge to the same solution we may as well conclude that the desired

marginal mode of H is obtained by this variation of the original EN algorithm.

The quasi marginalization using the EM algorithm was originally suggested

by Tom Leonard (personal communication) in the following form.

Th E-step

Identify the conditional distribution of P1 given P2, H S and Y

and denote the parameter by P1 = hl( P2, H. S. Y ).

Evaluate the conditional expectation of log complete likelihood

with respect to P1 and denote the result by Ep1 ( P2. H S. Y ).

Consider Ep,(P2,HIS. Y) as the log likelihood of the posterior

joint density f (P2.HIS, Y) with P1 integrated out and

' - - . . .... . . . . . .. . . . . . -4 . . . . . . . . . .

. . . . . . . . . . . . .. . . .
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j Expectation vith respect to ft of Expectation with respect to P2 P lt.

However, when the second expectation is taken, it may be the case that it is

difficult to do so with PI treated as a function of P2, but that it is

tractable with P1 regarded as constant. If this were the case, we propose

the following as a variation of the original EN algorithm.

The E-step

Identify the conditional distribution of ft given P2, H, S and Y

and denote the parameter by P1 hl( P2, H, S, Y ).

Evaluate the conditional expectation of the log complete data likelihood

with respect to P1 and denote the result by Epl( P2. I S, Y ).

Consider Et(P2,HIS, Y) as the log likelihood of the posterior

joint density f (P2,HIS, Y) with PI integrated out and

identify the conditional distribution of P2 given H, S and Y and

denote the parameter by P2 =Ih2 (HS,Y).

Evaluate the conditional expectation of EP1( P2, H I S, Y )

with respect to P2 given S and Y treating PI in the expression as

constant and denote the result by Ep-2pf( H S , Y ).

The N-step

Maximize EP2pt( H I S, Y ) with respect to H.

It is often the case that Ep2p1 consists of two parts, namly, the part

which corresponds to the original complete log likelihood with P1 and P2

replaced by functions of Pt and P2 , and the additional term due to taking

~ ................................................*... ....-....
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f( P 1)-f(P I Hi) f( 12 H2).

When the posterior marginal mode of

g( I S. Y) f/ f( P. H IS. Y) d P

-f f( P. HI S.Y) d P1 0d ,

are to be estimated we may proceed as follows.

The E-step.

Identify the conditional distribution of PI given P2, H. S and Y

C

and denote the parameter by P1 3 hl( P2. H, S, Y ).

Identify the conditional distribution of P2 given H. S and Y and

denote the parameter by P2 - h2( H, S, Y ).

Evaluate the conditional expectation of the log coplete data likelihood

with respect to P1 given P2., H. S and Y and denote the result by

P2° B S. Y).

Evaluate the conditional expectation of Eh( P2. H I S, Y )

with respect to P2 given H. S and Y noticing that P1 in the

expression is a function of P2 and denote the result by Eh 1 ( H I S. Y ).

The M-step

Maximize Eh21( H i S, Y ) with respect to H

e
treating P2 as constant.

This is an authentic application of the EN algoritlm in which the expectation

is taken successively, i.e.,

Expectation with respect to P1 and P2

- Expectation with respect to P2 of Expectation with respect to PI P2

, .- - -i-- .-.-.. . .. --. - , ,. -*, .- * ". ." -. .- . .. . . .i- . .' .- . .... . ..-.-.-. .-/-. --- .. ; . ---. .. .,.
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is that they cannot be negative. This can be shown by noticing that RSS's are

0

always non negative and V is positive semi definite. Therefore, the

solution by the EN algorithm may be different from the one by the direct

maxiization method such as the one employed in SAS (SAS User's Guide:

Statistics, 1982 Edition.) Elow the algorithm behaves in the neighbourhood of

zero is not known.

Also, as many Bayesian statisticians acknowledge, the distributional

assumption on Ca, b ]may be thought of as the prior distribution of those

effect parameters. (Box (1980), Lindley (1971) Box and Tino (1973), and

Lindley and Smith (1972).) If we accept their view, then, what we have done -

may be regarded as Parametric Empirical Bayes estimation of the

hyporparameters. where the hyperparameters .n A' and a.are estimated on

the basis of data ~.(See Morris (1983). )Also, from the hierarchical Bayes

point of view, the solution can be regarded as the marginal posterior mode of

the hyperparameters when the hyperparameters, mn and C. have uniform second

stage prior distributions.

Quasi Marginalization by Some Variations of the EM Algorithm

Consider the hierarchical model stated in the previous section, that is,

f( P. I Y, S -f( Y P) f( I H) f(H B ),

and suppose the partition of the form

P •P1,P2 B CH1,H2

and

. - . . . . . . . . . - - .. . .
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InsA ) + q In(s B ) + (a -m_)(a -ml)/ sA

+ (b'b) I/ s B +) AB + ipl( vii $

+ )iq P+q ) I sB + const.

The M-step

By differentiating EplmSASB, E[r) with respect to a, 'A'

aB and &E , and solving the resulting normal equations, we have,

+ S

sE (RSS w + trX'XV )i pq.

= RSSA + il( vii)) P.

sB = ( RSSB + v. ) I q,B i=p+l" 1i

where

RSs = ( X-X0 )

*2

RSSA (a*, -(am)'

RSS. = P+q b.
B i=p+l -i

The successive application of these two steps will result in the marginal

NEE of sE, sA, s ,3. and m, with A integrated out, namely. sE ,

+ 4 +
s A , 1. and m , at the convergence point.

One interesting characteristic of those 9LE's of the component variances
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is8 -(--J RSS €  (Z(j)-F a j),(Z(j)-F a;).

LA j!1C LAj, 1 + P lnlCA,

where

(a #-CA (a-a)

+ trVCAIQ;.

When the locally exchangeable prior is used for the factor loadings

Q and a. should be replaced by
- -j

(4.6.3.3) Q = ( (1/d.)F F C +(N/d )V)

and

a. Q.( (lWd -)
-a a J Z,(J) Ak~a I

th
if variable j belongs to the k locally exchangeable group.

The conditional expectations should be

(4.6.3.6) EF( A. D) . I S,Y) = saw as (4.6.3.4)

with LA* replaced by

LA. J~l LAJO ]"

where

L*a -1 A )

LA.. = C(Q.-a PC (.
k Ak C~

if variable j belongs to the kth group.

............ " " -.. "- "". " '"". I . ..
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Next we consider the analytic marginalization.

(4.6.3.7) AAEF( D, B S, Y -21In( ff(A. D.H S. SY dA)

1= l a.F IF a+/d~

a /d

-!j aj

+ )rp[ In 10.I 1

+ a'CA a + p InCAI+ I*+ D+ LH+ oonst..

Now, when C ->zero, this expression reduces to
A

(4.6.3.8) AAEF( D, H. I S, Y)

=Jl v(j)'F*(F*F)' F ,~j

+ _Z(j)'PZ(j) )/dj

r IIDI+ L * C I, Ocon

D AC p/d 'Q a
J11Y( Y() -j J -

-r iniD1 + F*+ L,) + LBconst,

Since. when C zero, we have

CL A C-

(4.6.3.9) Q. d (F IF + N V

*a Q; ((l/dj)F'IX )



so

= ( F 'F + NV F )

r e, *"1 * ,

.j j j jF'(j)/dj

a(F 'F +N V )/d

=a.'F F a +Na 'V a /d
-J -j -j -j J*

Therefore,

(4.6.3.10) y(j)'X(j)/d -!j Qj a
Ci C-

Z(j)'Z(j)/d - 2a.'Q a

+ aj Q a

Z(j)'.Y(j) -2 a.'F

* C CC C CC•.

+a 'F Fa +N 'V a )Id
-j -j .j -j j

=(RSS +a(NV)a )Id

Finally, we have, when CA -> zero.A

(4.6.3.11) AAEF( D, H s, Y )

=C RSS + aj'(NV )a. ) / d.
j - -J J

+ L - r InIDI + Lb + L + const.

Comparing (4.6.3.4) to (4.6.3.11) we notice that in the former expression

the additional term due to taking the expectation is added to the summational

term and that in the later the multiplicative factor to InIDI is reduced by r.

In either case this corresponds to the adjustment for the degrees of freedom of

• . . .' ",.. .'.'.: . .;, ...,. .; ...' .,- , .-.. ,~ > . ,-;....., .,-... - ..,...... . . .. . -. . .', .,, ..., , .. . . . . . .
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the error variance. See (4.6.9.1) and (4.6.9.2) in the later section. That

is, in both cases, the estimate of D will be expanded.

It should also be noted that this mnethod of quasi uarginalization does not

work when exchangeable prior is used for~ the factor loadings with nonzero

-I
CA

Quasi Marginalization with respect to the Error Variacnes

Consider, again, that minus twice the log posterior density of D and H is

given by E AF(D,HIS.Y) or AAEF(D.HISY) and denote it by f*(DHISY).

(Th quasi marginalization of EA(DHISY) given in the next section is also

considered here.) Here, again, we may either take the expectation or integrate

D out analytically. We first consider taking the expectation.

Write minus twice the log density as

I I(46..1 e -ro vaince f*DHSe(... ad(.692Ynt)ltr eto.Ta .

tshud +lso bed +oe that+2 thi meho I fqaimriaiainde -

-p( n ln(s/2) -2 ln Gamma(n/2))

+ LF + LA +La

where

uj RSS +tr(F T +N V )Q +Na 'V a,

acee
ifr wE rex a n e laer ssection ishedco oa~g it ozr

u. RSS.i + Na 'V as

N.

*. . . .. .
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if AAEF is used.

Therefore, the conditional distribution of dj given H, S, and Y is

(4..4.) -2 *
4.6.4.2 d IH, S. Y :X N +n u+S)

where N = N, if EAF or EFA is used, and

C

N N- r, if AAEF is used.

Since those distributions are independent for J=1,2.....p. the joint density is

given by the product of the inverted chi square distributions given. We denote

the density by f DIHSY).

The conditional expectation is given by

(4.6.4.3) EDAF(HIS.Y) or %DAAEF(HISY)

f*D

= -2 f In f (D,HIS,Y) f (DIHSY) d.

= 2 :~1 (uj + s)id. + (N*+n+2) vj]

- p( n ln(sI2) - 2 in Gamma(n/2) )

+ LO+L +L1  + const,

where

* C

d = l/E( 1/d. ) (u.+s)/(N +n),j - I J .

and

* = E In d) .vj -( md

I ln( (u.+s)/2 ) - psy( (N +n)/2 )
J i,

where psy(x) is the dlganua function, i.e., psylz) d lnGaaua(x) / di,

.. . . . . .. . . . . . . . . .
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[Johnson and lotz (1969)].

The term LA. should be subtracted from (4.6.4.3) if AAEF is used.

Next. oonsider the analytic integration of D. The integration of

f (D,HIS,Y) with respect to D is straight forward. The result is

(4.6.4.4) f(HISY 1 C

( s/2) n/2/(MU +s)) IN*+n)/2 Guma( lN*+n)/2l/Osmm I,/21 .- ,."

However, instead of straight integration we may approximate the result by

using the log normal approximation used in Leonard (1985). That is, the form

of f luHIs,Y) suggests that

(4.6.4.5) uj I d 1 N *, d ,.

and

i-2
d. : ( n. s

where X2( n, a ) denote the chi square distribution with

the degrees of freedom n and the mean us.

By approximating these distributions by the log normal distributions,

Bartlett and Kendall (1946), we have.

(4.6.4.6) In u. I d. N( In d + In N , 2/N 1.J a j.

and

In d N( In(s/n) + 2/n 1.

Therefore, marginally.

(4.6.4.7) In uj N( In(s/n) + in N 2/N + 2/n ).
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Finally, the result is.

(4.6.4.8) Aek(BlS.Y) or AJE(H[SlY)
j In~uj )-(In( 2

2i (ln(u )-(ln(s/n)+lnN ) ) / (2/N*+2/n)

+ I + L +LA* ) +const.

When the quasi marginalization of the error variance by taking the

expectation is performed prior to the quasi marginalization with respect to the

factor loadings we have a similar formula for E namely,

(4.6.4.9) E (HISY) same as EDAF(HISY)
ATIF

with u RSS + Na.'V a

where RSS is defined in (4.6.3.4),
Se

and for the calculation of all the terms d should be used.

Given EDA(HIS.), EADF(IS,Y), ADEAF(HISY), or AjAE(HiS.Y)"

we consider those as minus twice the log posterior density of the

hyperparameters and the mode of those distributions are to be estimated in the

subsequent *-step. However, we first consider the case where the factor

loadings are first marginalized.

Conditional Distribution of A Given F, D, U. S. and Y

In this section the derivation of EDFA and ADA where the factor

loadings are first marginalized by the El algorithm will be presented. ,.

By collecting LA. and from (4.3.5) and (4.2.16), respectively,

A. .". "" ""
b, :'1 - '."- A ,,,'.m .d.,,, d,,.. t,, .,., ,.,.,, ,.. ,..,S ~l. ., - - """ : " " " " ' ' '.. . . . .".. .".".. . . . . . . .".".. . .,.",'
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and using the same tricks as before, we have

(4.6.5.1) '1Aj+ L
AJ

(a -a.)'Q (a -aJ) + const,

where

Q.=( (1/d )FF + '

* CA

aj Q((l/dj)F'(j) + -a
-J j 1(5) CA! )

This indicates that given F, D, H, S. and Y,

(4.6.5.2) a I F, D. 1I, S. Y N,( a Q 1.

Since these are independent for j=l,2...,p, the joint density is the product

of these densities and we denote it by f(AIFD,HSY).

When the locally exchangeable prior distribution is used for the factor

loadings, similar correction as (4.6.3.5) is necessary. That is, replace all

the CA's and a's by C and ak if the variable j belongs to the kth

group.

Conditional Expectation of Minus Twice the Log Posterior Density

We have

(4.6.6.1) E (F.D,HIS,Y) f L f(AIFD,H,S,Y) d A
A

=J:,j (RSSJ + trFFP )* /dj + L Aj

+ p lnIC I + + LD + LH + const.,

where

I,

- ' " -- -- " ")'( -F 
--

),S *v(j)- )-
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L . (a -a) C -(a-)+trC 1Q
Aj' -j- A-j -A j

We write

(462[L n+ p IniCALI
(4.6.6.2) LA Aj

When the locally exchangeable prior is used similar correction as

(4.6.3.6) is necessary.

Quasi Marginalization with respect to the Factor Scores

Now consider EA(FDHIS Y) as minus twice the log of the posterior

density of FDE and denote it by f (FDDHISY). Then, by writing

observation wise, we have

(4.6.7.1) EA(FD,HISY)

.N [ * -1 '
=1(Zi-A fi)'D (XI-A fi)  ,

%.

+ fi( C I + Q.ld. )f. I ",

+LAC + L) + L, + const.,

where

Q.d.= Qj/dj .

Again, using the same tricks, we have

(4.6.7.2) I DH.SY Nr (f:'V )

where

V AIDA + Q./d. + CF

and

J' , - -. .,j,- - . . .. ..... o... . ......-. . ......... . ...- . ".•.. -
. .~~~~~. •..... .............................. i" i ..... ..d"
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Those conditonal distributions are independent for i-1,2....,N. the joint

density is liven by the product of those and we denote it by f (FID,HS,Y).

Also, we write,

e -1 * " S:

(4.6.7.3) F Y D A V.

When the locally exchangeable prior is used for the factor scores a

similar correction as (4.6.1.4) is necessary.

The conditional expectation of E A(F,DHISY) is

(4.6.7.4) EFA(DIIS.Y) =f E (F,D,RIS,Y) f5(FID.H,S.Y) dF
EFA A

= )'D ( 1-Af) -(Yi-Af-

+ f,( Q./d. + C )fi I

+ N tr(A 'D A 4Q.Id.+V. )v

+ + LA +% + + const.

2J1 [ ( RSSJ+ tr(F'F*+NV)Q

+ N a 'Va )Id ]

+ v + LA* + L0 + f + const. not including D,

where RSSj ((j)-F aj)'(Y(j)-F aj),

and

i * -1
LF.= i=1[ fi"O./d.+Cp %f] "'

+ N tr |;-
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It should be noted that the final expression in (4.6.7.4) though it is

the same as the one in (4.6.3.4), is a different one since the definition of

F and A in them are different. With this difference in mind, we can

perform the same quasi marginalization with respect to the error variance as

before.

Estimation of the Hyperparameters: the M-step

Here, the minimization of minus twice the conditional expectation of the

posterior density of H given S and Y is considered. The expectations are given

in (4.6.4.3). (4.6.4.8) and (4.6.4.9). It is now necessary to specify the form

of f(MIS). When some information is available we may use the conjugate form

suggested in Lindley and Smith (1972) or Lindley (1971). When there are little

information we can use uniform prior distribution for H. Although the use of

uniform prior distribution in the case where many parameters are to be

estimated is subject to criticism, we can argue that it does not hurt the

estimation since the number of random variables which have tniform prior

distribution is greatly reduced, Lindley (1975). Since the informative

specification of the prior distribution of the hyperparameters is usually

%*.*~
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difficult, throughout this section uniform prior is used for the

hyperparameters.

First, we minimize with respect to the hyperparamters of the factor

loadings, HA. Since the term which includes HA is the same for all the

cases, we have

(4.6.8.1) i - ~jia;]I

and

A I A + )j! Qp,
A j=l~ -"P

where I = I - (l/p)l 1 '.

p -p-p

When the globally exchangeable prior is used for the factor scores with

f=O and CF=I , those mode are not unique in the sense that an orthogonal

rotation of A by an orthonormal matrix, say. T, results in a different mode Ta

and TCAT, which also gives the minimum of those expectations. Therefore,

AAthe off diagonal elements of C A should be set equal to zero.

For the hyperparameters of the error varinaces, %, when the expectation

method is used, we have the following derivatives.

(4.6.8.2)

8E/8n = =C[ v; - p( ln(sl2) - psy(n/2) ).

Wa]:11 1/d I- pn/s,

a2E/On (1/2) p pay'( n/2 ),

2/
a E/8ns -ps,

. . . .

i. ..... ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..i~. ; i..::; :' I " ;i:':: i -.-. ::?;-----' ?--/ ;?;--.;? ?-:
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2 2 2

where psy'(x) is the trigamaa function, Johnson and Kotz (1967).

With these derivatives we can solve for u and & by the Newton-Raphson

method. Since there are only two parameters involved the process does not

require much iterations.

When the log normal approximation is used the solution becomes much move

simple. That is,

(4.6.8.3) n + = IM/ (1/2) jP1[(ln u.u.)
2]/P1/N )

J~l J+ \7p " + "
s = Exp[~Lu /p-In N I Zn ,_

where u. =j ln u / p.

When the locally exchangeable prior for the factor loadings is used

(4.6.8.1) should be replaced by

(4.6.8.4) k[a]InAk

and

C - A k+2J.kQ;Jln.J

C A

where the same partition as F before is assumed for A and 3k is the

nAk z nAk centering operator. When a priori zeros are specified for some

of the elements of ak's those must be set equal to zero in (4.6.8.4). This

does not affect the estimation of C Ak'S since this type of the restrictions

of the location parameters can be handled independently of the scale

parameteres, Mardia, et.al. (1979).

• " -" '" "- " -" .....-" ............"'"'.". " '--... ......... .-.- - ." ... .-. . .
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When the locally exchangeable prior for the factor scores are used we have

to estimate the hyperparameters. Differentiation of L,, with correction in

(4.6.2.5) gives

(4.6.8.5) = i f

and

= Fk'JkFk/n. + Vk.

where Jk is the nFk x n k centering operator.

To enforce the orthogonality of the model at least one of the

matrices should be set equal to I . Also, to avoid the rotational
r

indeterminacy, one of the C Ak's should be constrained to a diagonal matrix.

Marginal Mode of the Error Variances Given the Hyperparameters

Conditioned on the hyperparameters, the marginal mode of the error

variances can be calculated by a variation of the EM algorithm. That is,

depending on the method of quasi marginalization of the factor scores and the

factor Inadings. the mode of the error variances is given as follows. When

E F or EFA is used, from (4.6.3.4) and (4.6.7.4) we see the marginal not .

of the error variance is given by

(4.6.9.1) d ( u. + s ) / ( N + n + 2 ) j-l,2,....p,.

where

u RSS +tr(F 'F +N V )Qj+a j'V a -
j i-i -

................ . .. ./
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and RSS ,F V ,A and Q are defined,J j

in the corresponding E-step formulae, namely,

either, in (4.6.3.4). (4.6.1.1). and (4.6.3.2) or in (4.6.7.4),

(4.6.7.2). and (4.6.5.1) depending on the choice of E or E.A,

respectively. When the locally exchangeable proir is used correspoinding

corrections should be made.

When AAEF is used the estimate becomes, from (4.6.3.11).

(4.6.9.2) d uj + s N + n - r + 2 ), j1,2.....p.

where u - RSSj + a '(N V )a
j J,-.

e

As noted before, the lack of the term including Q Is. which coms

from taking the expectation with respect to the factor loadings, is compensated

by reducing the denominator in (4.6.9.2).

Marginal Mode of the Factor Scores Given the Error Variances

Conditioned on the error variances and the hyperparameters marginal mode

of the factor scores can be calculated by the EM algorithm where the factor

loadings are treated as the missing data. The result is given in (4.6.5.1),

(4.6.6.1). (4.6.7.2). and (4.6.7.3). Here, the first two formulae are

considered to be the E-step, and the last two, the M-stop. 1 Due to the

e
symmetry of the conditional density, F is not only the mean but also the

mode.) It should be noted that this formula is not linear in terms of F

. ." . .
" 

. .
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since V include Q 's which, in turn include F W When the locally

exchangeable prior distributions are used corresponding corrections should be

made.

Marginal Mode of the Factor Loadings Given the Error Variances

Conditioned on the error variances and the hyperparameters marginal mode

of the factor loadings can be calculated by the I algoritm where the factor

scores are treated as the missing data. The result is given in (4.6.1.1-3).

(4.6.2.1). and (4.6.3.2). Here, the first four formulae are considered to be

the B-step, and the last one, the X-step. ( Due to the symetry of the

conditional density, A is not only the mean but also the mode.) When the

locally exchangeable prior distributions are used corresponding corrections

should be made.

Joint Mode of the Factor Scores and the Factor Loadings

Given the Error Variances

Conditional on the error variances and the hyperparameters, the joint mode

of the factor scores and the factor loadings can be given by a straight forward

minimization since there is nothing left for marginalization. Successive

application of

(4.6.12.1) F+ = DY 1 A V+ .

where V ( A'D1A + (. -

67 . %
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and

+4 + -
(4.6.12.2) a -Q C(1/d )r -1 C

j j A A •

gives the joint mode. Note that no extra term due to taking the expectation is

involved. When locally exchangeable prior distributions are used corresponding

corrections should be made.

S~ayo the Algorithms

A amry of the six methods propsed in the previous sections for the

estimation of the modal value of the hyperparamoters Is found In Table 1. The

necessary formulae are listed for each step, namely, the B-step and the quasi

marginalization and the *-step. The two steps are iterated until the process

converges.

Technical Notes

Unless specified otherwise the following initial configuration is used.

Initial Factor Loadings

(4.6.14.1) Principal Component Solution based on (llN)YVY matrix.

Initial Error Variances

(4.6.14.2) diag( (lIN)Y'Y - A'A I.where A is the initial factor loadings.

Initial Factor Scores

. .i

..... .6.14.... Y D7 .. ... ... ..

a~C;

(4.612.) a - ((/djF'zj)+ c~k, ) ::!..
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When no a priori zeros are specified it may be efficient to orthogonally rotate

the initial configuration given above so that

(4.6.14.4) A'J A diagonal
p

is satisfied and enforce the restriction

(4.6.14.5) CAk- diagonal

in the N-step. When the hyperparamoters have uniform prior distributions this

restriction eliminates the rotational indeterminacy. When there are a priori

zeros, the following orthogonal rotation to the target matrix B should be

performed on the initial configuration given in (4.6.14.1).

(4.6.14.6) B = [ b 1 , j - 1. 2. .... p, e = 1, 2 ... , r,

where bje =0 if j belongs to k and ake 0,

- missing,

where ake, k : 1. 2. .... GA, e = 1. 2 ... , r, denotes

the locational hyperparameter of the factor loadings.

The iteration process should be terminated when certain convergence

criterions is satisfied. For the programs where the calculation is done with

double precision numbers the criterion

Successive absolute difference of n is less than or equal to .001,

and

Successive absolute difference of dip J-l,.2....p. is less than

or equal to .00001,

is used. Since the degrees of freedom, n has a value comparable to the number

of observations, the convergence criterion for n should be adjusted according

to the number of observations. Also, the convergence criterion for the error

mu nnn numm l~lllil IIl*l. ......
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variances should be adjusted according to the observed variance of each

variable.

When performing the %FA or AA1 A method with a uniform prior

distribution of the hyperparsmeters the conditional expectation of F tend* to

shrink toward zero. This is due to the unboundedness of the marginal

likelihood of F and D in (4.4.1). Therefore. some normalization such as

0 0
(4.6.14.7) F OF -N I

and corresponding rescaling of V ,C.A ,a, and CA is necessary.

Also. due to the unboundedness of (4.4.3) with uniform prior on s, algorithms

such as E or EF are impossible. The essential difference between
AFD ?AD

those two cases is that in the latter case. where D is marginalized first, the

conditional expectation of l/d or d is a function of RSS only and can

easily become zero.

When no a priori zeros are specified we may be able to rotate the solution

to a simple structure. This is possible because we have uniform prior

distributions for the hyperparameters. It should be noted, however. that the

rotation must be performed not only on the parameter matrices but also on the

hyperparameters. That is, denoting the rotated matrices by C, the result of

the rotation defined in (2.1.14) is

(4.6.14.9) 9 4 F T.

# -1
A -A(T')

1# -I

A''

C T TC (T'). k -1, 2, .. GAk Ak A'

2.7
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f! T-fk, k = 1. 2 .... GF

and C-CT. k ,. 2.

It should be noted that the conditional dispersion matrices such as V

and may be interpreted as the lower bound of the posterior marginal

dispersion matrices of f or a respectively, in the sense that the real-i

marginal dispersion matrices are larger than the conditional dispersion

matrices. That is, if some of the conditional dispersion matrices are very

large it indicates that the factor analytic model with the given dimensionality

does not fit the data.

Also, the matrix (1/N)F 'F is the sample dispersion matrix of the

factor scores calculated from the estimate F . Threfore, specification

errors with respect to the number of dimensions may be checked by the diagonal

elements of this matrix. That is, if some of the sample variances are small, ,

it indicates that we might have specified too many factors. In this case the

analysis should be performed with a smaller number of factors.

When some of the error variances are zero use

-1
(4,.6.14.9) V C F - cIA, (D+FA') ACF.

w =D-AV ( ACpA' + D) AC.

Q -d(F'F +NV +d CJj j Ay

C C C -I1-1o

and ai (F F NV +dC )...'"

C -1

x (F'y(j )+d CA a).
...... o .
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The above expressions given above. which can be derived by using matrix

inversion tricks and Lawley's trick, reduce to the expressions given by Robin

-1
and 7hayer (1982). namely. (2.2.26) through (2.2.28). when CA is zero.

AF
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CRAP- V

EVALUATION OF T7E METOD'

Convergence

In order to check for convergence, the solutions using the following nine

methods were compared.

1. M.L.E. by SAS

2. Marginal Estimate of the Eror Variances

i.e., % A without marginalization with respect to D

3. Marginal Estimate of the Eror Variances,

i.e., E without marginalization with respect to D.
'.F

4. ADAEF

5. DEAF

6. ADEFA

7. E F

9. EADF

The three data matrices, namely. sixteen psychological tests from

Harman (1976. pp123-124). ten artificial variables from Francis (1983).

(see Seber(1984)). and five mathematics tests from Mardia. at., al. (1979) are

analyzed with r - 4. 2. and 1, respectively. The first matrix is a correlation
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matrix and the rest are dispersion matrices. The elements of the last matrix

are divided by 1000 in order to keep the numbers in a reasonable range. For

the factor loadings, in order to make the comparison possible, 
CA ->

ziro is used.

For methods 2 and 3, the convergence criterion is such that the

mean absolute difference of d ( .00001.

and for the last six methods, the criterion for convergence require the

absolute difference of n (= .001.

The results are shown in Figures 1-3, where the mean and the variance of

the estimated di s are also shown. We can conclude from these Figures that

six variations of the E algorithm are almost similar. Therefore, the quasi

marginalization may be regarded as a very good approximation to the real

marginalization.

Since ED is easy to modify for the calculation of MLE and the marginal

estimate of the error varinaces in the later analysis only EDAF is used.

Robustness to Initial Configuration

In order to evaluate the robustness or the sensitivity to the initial

configuration the correlation matrix in Table 2(e) was analyzed with a

variation of the EDAF method with several different initial configurations.

The data matrix is calculated by Davis (1944) and used by Martin and McDonald

(1975) and found to result in a Heywood case with zero error varinace for the

.- ° oo o. .Oo- . O° o-. .°o ° - - o.o .Ii p m ° ° .° °o ° .o -•. .".""° °" "" """" ° 
°

o '
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first variable.

The variables are:

1. Knowledge of word meanings

2. Ability to select the appropriate meaning for a word or phrase in the

light of its particular contextual setting

3. Ability to follow the organization of a passage and to identify

antecedents and references in it.

4. Ability to select the main thought of a passage

5. Ability to answer questions that are specifically answered in

a passage

6. Ability to answer questions that are answered in a passage but not in

the words in which the question is asked

7. Ability to draw inferences from a passage about its content

8. Ability to recognize the literary devices used in a passage and to

determine its tone and mood

9. Ability to determine a writer's purpose, intent, and point of view.

i.e., to draw inference about a writer

A special version of the E.AF program was developed which uses a uniform

factor loadings prior, a globally exchangeable factor score prior, and a

globally exchangeable error variance prior. The degrees of freedom and the

scale parameter of the inverted chi square distributions are calculated with

the E..A program usinrb the same prior distributions as stated above for the

factor scores and the factor loadings. Since the main interest here is to see

the effect of the globally exchangeable prior distribution of the error

variances on the analysis of a Heywood prone data matrix and the comparison

. . *. .
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between the Bayesian solutions and the KZE, the marginalizations of the factor

loadings and the error variances are not performed. That is, the program

calculates the posterior joint mode of the factor loadings and the error

variances with the prior distributions specified above. The only difference

between this special program and the method proposed by Rbin and Thayer (1982)

is that the former uses the inverted chi square prior distributions as the

prior distribution of the error variances. It is assumed that the algorithm

has converged when the mean partial derivative of (4.4.2) with respect to D is

less than or equal to .00001.

Eleven different initial configurations of the factor loadings and the

error variances are calculated as follows. ( The initial configuration for the

factor scores is calculated, given A and D, by (4.6.14.3).)

1. HLR

Result of EDAF with globally exchangeable factor score prior distribution

and uniform factor loading and error variance prior distributions

without marginalization of the factor loadings and the error variances.

This is the MLE by the EM algorithm proposed by Rabin and Thayer (1982).

2. BLM

Result of EDAF with globally exchangeable factor score prior distribution

uniform factor loading and error variance prior distributions

without marginalization of the factor loadings and the error variances.

Instead of (4.6.14.2) its mean is used as the initial estimate of all

the error variances.

This is also the MNE by the EM algorithm with a different initial estimte.

3. ER
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Result of % AF with globally exchangeable factor score and error

variance prior distributions and uniform factor loading prior distribution.

The hyperparameters n and s are estimated here.

4. BHN

Result of EDA with globally exchanger.ile factor score and error

variance prior distributions and uniform factor loading prior distribution.

Instead of (4.6.14.2) its mean is used at the initial of all

the error variances.

Although the hyperparameters are estimated here they are not used

in the later analysis.

5. BMR

Result of EDA with globally exchangeable factor score prior distribution

and uniform factor loading and error variance prior distributions

without marginalization of the error variances.

This is the marginal LE of the err. .riances.

6,

Result of with globally exchangeable factor score prior distribution

and uniform factor loading and error variance prior distributions

without marginalization of the error variances.

Instead of (4.6.14.2) its mean is used as the initial of all the

the error variances.

This is also the marginal WLE of the error variances.

7. ss C

WE by SAS PROC FACTOR with PRIOR SNC option.

. . . .. ~. .
. ........

. . . . . . . . . . . . . . . .. . . .
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[ af/OX ] a(tr[af/aY] 'Y)/aX.
C

Proof

/pq j Bf/BYi Yj/B pq -

Pqq
- tr [ af lay I, I M~ax ],

a(tr[ f/aY I Y)/axc pq'

where [ aY/Ox pq [ 8y j/axpq Is a x b. IIpq

When evaluating [ Wf/aY I treat Y as if all of its elementsC

are distinct even if Y is symmetric.

As a special case of b-1 and d=1 we have

Of/ax = [ af ' [ ylax 1.

where [ alax I = ayi/ax ], iJ1=21.....a, =1,2....C., a x c.

Also, when Y = z I, we have

[ af/ax ] tr( atr[af/aY] /ax ].

C

For some specific forms of f we have

atrAX/aX = A'. if X is distinct.

- A+A'-diag(A). if X is symmetric.

atrX'AX/aX (A+A')X, if X is distinct,

= (A+A')X+XI(A+A')-diag[(A+A')X]. if I is symmetric.

atrXAX'/aX = X(A+A'), if X is distinct,

= X(A+A')+(A+A')X-diag[(A+A')X]. if X is symtric.

atrX'AXB/8X AXB+AIXB', if X is distinct,

AX+BXA+A'B'+B'XA'-diag(AXB)-diag(BXA), if X is symmetric.

aX-KA/OX --(xKA'X 1 - . if X is distinct,

. . . .. . - . + . . _ + + . , - . • . - +. . . . . o . . . . . . . .. . . .:



( atiay I W . Of/O-ij 1, i-12.... .. J ...-. " a x .

and. the derivative of f with respect to X.

WaxI8 I - [ af/ax Is i-1,2#,... pop jinlp2,...,d* c x d.
ij

Therefore, the derivative with respect to Y' is

I 8f/aYV I Wa C Of b x a.

Also. when Y is diagonal,

[ fly d[ fY I .. a .

Using the followini properties of trace we have two usefull rules for

differentiation.

trUV -¥trVU = trV[UY trU'V, and trW u

Kj~~ ijj

1. Product Rule

Let U and V be functions of X. Then.

8trUV/8X - atrUV /8•  + atrU V/X.
c C

where subscript c denotes that the matrix with c is to be held

constant for the purpose of differentiation.

Proof

atrUV/ax .aIj( u v )lax
pq qi ji pq

- (auj/axpq vii) + (uij Ovjj/O~pq)

a a ~(u (v..) )lax + a'S((u )v lax
L ij ijc pq + ij cji pq

- atrUV lax + 8trUV/Ox . II
c pq c pq

2. Chain Rule

Let Y be a function of X. Then,
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=(I~j (CijYij) )"

=I'j c.jE(y.i)

- trCE(Y)

- trCE(xx')

a trC( V +E()E(x)" )

- trC( V +x x )

M trCV + trCx~x

Wtrcv ' +Cz. II i

Partial Differentiation of Some Functions of Matrices

Following rules and formuae are collected from Schoenemann (1965).

Rao (1973). Press (1982). and Nel (1980).

Definition:

Let f = f( Y ).

where f is a matrix to scalar function,

x ] " i=1,2....,a. j-l,2....,b. a z d,

y - a (I)

ij ij

where &igj- =l,2, .... a, J-1.2.....b. is a matrix to scalar function.

Then, the derivative of f with respect to Y is defined as

. . . . .*o

. . . . . . . . . .
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-1 -1 -1- D 'A(AD 1A) (CF +A'D A)-D A

-1 -1-1 -1- D A(AD A) C

Thersfore,

07'A(A-7'A)'+C)C - D71 A(A'D71 A) 'CFl

O 'A((A'D 'A) +Cr) -D "A(A'D 'A)-'

o0 A(I+CA'D7 A) -D7 A.

07" A D7A(I4CA'DA)-'

-D A(CF+A'D7A) - I

Exp~eotat ion of Quadratic Form

LtE(z) x adD() V

Then E( z'Cz -x C, + trCV

Proof

z Cx trCzz'

where Y W x.

Therefore,

E(z'Cx) E( trCY
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Let A, B. and C be, respectively, p x p, p x q, and q x p. Thea,

3. IA + Bc I I A 1 I I I + A1 BC I
p -

- IA 1  I I +CA 1 B I.
q

Lawley ' s Trick

D-1A D-1 A (CF'+A'D-A)-1 -1

where 0 = A C, A' + D.

Proof

By the Matrix Inversion Formla 1 we have

-1= - -1 -1 -1 -1

Multiply A(A'D-1A)- (C+A'D -1A) from the right. Then,

lf 1A(A'D-1A)- 1 C;'+A , 
1 A) -

-1 -1 -1 + -1

- 0 A((A'D A) CFI +1) A

-1 -1 -1 -1- 0 A( D A)

-1 -1 -1 -1 -1
right - A(A'D7A) '(C., +A'D A)

-D A(% +A D A) AID 1A(ADA)- 1 ("1 +AD1-A)
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Sum of Squares Completion Trick

Let .a and b be p x 1. and A and B be p z p symetrix.

q - r) A~z-a) + (xi-b)'B(x-b)

-(x-d) ID(z-d) + c.

whre,

D -A + B.

d D (A& + Bb),

and

ca Aa + b3, - d'Dd.

Proof

q -x'(A+B)x-2x'(Aa+Bb)+a'Aa+b'Bb

-(-(A+B) (A&+Bb)) *(A+D) (x-(A+B) (Aa+Bb))

-1-(Aa+Db)(A+B) (AaeBb)+a'Aa+b'Bb.

Matrix Inversion and Determinant Trick

Let A and B be square. Then,

1.(A + UV) 1 A7 - A7U( B7'+ V 1 U )1 VA7.

2.(A +B) A7 (A7 +BF )- B.
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But.

+ + +

Y 1B -XB -XB= B -B)

and

U 'CY+-XB) = YPX(B+-B) - zero.

since Px - zero. %"

Projection Operator Trick 2

Let Z be n x p. V, n z r, B, r x p. and A, p z p.

Then,

Q- ( Z-VB)IA 1 ( Z-VB)

-1/ -1/
ZIA 1 2 PA- 1 Z + (B-B )'VAV(B-B ),

where.

-112 -A112'
PI -A v (vA-v) - v -A

n

and

B , (v,A-Iv )-v,A- z. :.

Proof

Apply the trick 1 to the transformed variables

Y -A 7Z and X A 2V.

7.7

. .. ..... ~... . . ...... "...... .... .... -. -- =-.;- ' ; _- .. . -- .. .-.. _ ..-.-..- -_.._..,,l -;_- .
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AFPEOVIX

Projection Operator Trick 1

Let Y be n z p. X. n z r, and B. r x p.

Then,

Q-Cy - lB )(Y - lB)

YIP + B B+ IX B-B+

where

n

and

A7 is a generalized inverse of A.

Proof

Let Y+ x B X- (IX)-X'Y.

and U -Y-Y, iPy.

Then.

Q (Y-Y +4 -XB ) Y-Y*+Y*-ID )

u + +X Y-I

+ + + - + +Y-XR + +YXB +Y-I)
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the later stage. As we expect, the modal values are slightly larger than the

expected values. Next, we observe more shrinkage toward the man in the

marginal estimate. This can be checked by the sample vart aoes of each set of -

the parameters. This is also expected since the further we marginalize the

smaller the conditional dispersion matrix becomes. For the factor scores

compare V's in (4.6.12.1) and (4.6.7.3) and for the factor loadings, Q's in

(4.6.12.2) and (4.6.3.2).

As far as this data set is concerned, it can be said that the choice of a

particular set of the estimates is purely subjective.

Conclusions

It is found that six methods to marginalize parameters behave very

similarly. Therefore, the use of the simplest and the most natural method,

namely, the EDA method, is recommended. It is also found that the method is

robust to the choice of initial estimates. Finally, use of locally

exchangeable prior distribution for the factor loadings is highly recommended

when there are some grouping information of the variables prior to the

analysis.

. .. .

. . . . . . . . . .. .. . . . . . . . .... . .
"2." "" ""- .,' - " .' . """,:". ." "" - ",' "'-- """, " , '"". "" '"- ."" " -"'" " ..- ," ."-"." ". ." 

"
'"'".
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3. Flgs-

4. General Information"

S. Paragraph Comprehension

6. Sentence Completion

7. Word Classification

8. Word Meaning

9. Addition

10. Code

11. Counting Dots

12. Straight-Curved Capitals

13. Word Recognition

14. Number Recognition

15. Object-Number

16. Numbr-Figure

Since it is known that the variables form four clusters, [Shiba (1979)). the

following four locally exchangeable groups with a priori zeros are used.

Group 1. Variables 1, 2, and 3, with zeros in dimensions 2. 3. and 4.

Group 2. Variables 4, 5, 6, 7, and 8, with zeros in dimensions 1. 3. and 4.

Group 3. Variables 9, 10, 11, and 12, with zeros in dimensions 1. 2, and 4.

Group 4. Variables 13. 14, 15, and 16, with zeros in dimensions 1. 2, and 3.

With this prior specification the data set was analyzed with the EDAF

method and the results of each stage are shown in Tables 6(a) through 6(h).

We first notice that the difference between the first stage and the second

stage is not large. Therefore, it may be reasonable to skip the second stage

and use the conditional expectation of (reciprocal of) the error variance in

......... " "...........' ." ..., ...,," ....,. ' .."...."........"..."... " " o:-" '""-:'"" "-" .' '""
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The estimated hyperparameters are shown in Table 5(g).

Choice of Estimates

As noted before, the choice of the estimates depends on the investigator's

interest. If we are interested in both the factor scores and the factor

loadings, the joint mode sould be used. However, if we are interested in one

of them the marginal mode should be used. Also, in each stage of the

estimation procedure, that is,

Stage 1. Marginal Mode of the Hyperparaueters

Stage 2. Marginal Mode of the Error Variances Conditional on

the Hyperparametera

Stage 3. Joint Mode of the Factor Scores and the Factor Loadings

Conditional on the Error Variances and the Hyperparameters

Stage 4. Marginal Mode of the Factor Loadings
L/

Conditional on the Error Variances and the Hyperparameters

Stage 5. Marginal Mode of the Factor Scores 'a

Conditional on the Error Variances and the Hyperparamsters

all the parameter values are available, if not as the mode, as the conditional

expectation. Therefore, it may be reasonable not to perform all the analysis

if those parameter values are similar.

In order to check this aspect of the procedure the correlation matrix in

Table 2(a) was analyzed. The variables used are:

1. Visual Perception

2. Paper Form Board

4b

. . - s%. . . . a ' " -. .• • , ° - *. . . .... ° ' - "-° . - . . . . • - . . ". . "

i 'm i . n • - . . . . . . ..i I.
"

.
i
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9. Mechanical Comprehension

10. Electronics Information

The data were analyzed by the ADEA method with three different prior

distributions of factor loadings, namely, the locally exchangeable prior with a

priori zeros in the hyperparameters, the locally exchangeable prior with the

same groupings but without a priori zeros, and the globally exohangeable prior.

The grouping of the variables and the locations of the a priori zeros are

Group 1: Variables 1,3 and 4, zeros in Dimensions 2.3, and 4.

Group 2: Variables 7,9, an 10, zeros in Dimensions 1,3, and 4.

Group 3: Variables 2 and 8, zeros in Dimensions 1.2. and 4.

Group 4: Variables S and 6, zeros in Dimensions 1,2, and 3.

These grouping and a priori zeros are suggested by the analysis by e*, et.al.

(1981). The globally exchangeable prior distribution of the error variance is

used and the hyperparameters, a and s, are estimated first. Thn, conditioned

on those values and the final value of D, the marginal mode of the factor

loadings are calculated. The marginal mode of D is not used since, at least

with this data, it is very similar to the final value of D.

The results are shown in Tables 5(a) through 5(d) with an additional

solution from SAS PROC FACIM IL with PMIOR SHC option, Table 5(e), and the

oblique solution in Roe, et.al. (1981), Table S(f). The results in Tables

5(b) through 5(e) are rotated by the VARIMAX method. By comparing Table 5(a)

and 5(b) it is obvious that just by specifying a priori grouping and zeros in

the hyperparameters we can attain simple structure. Ironically, in this case,

the VARIMAX solution seems to be worse than the unrotated solution. The rest

of the Table 5 also shows the sam pattern of simple structure.

:; .... ... .- ,,. .., , , . ,. ...,. . .., , ,....... ., ,., ........,,...... , . .,,5 5 S. . . . . . . . . . . ... ,....,.. ... .,.,......... .'
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It can be concluded that the method is very robu to the different

initial configurations. Also this finding strongly demonstrates the

superiority of the Bayesian factor analysis proposed in the Chapter IV over the

usual MLE. Five different ME's found by SAS PROC FACTOR are reduced to two

different Bayesian solutions just by assuming an informative prior distribution

of the error variances. Intuitively, it can be said that the prior

distribution has the effect of deemphasizing local minima. A similar result

may be expected from the use of the prior distributions of the factor loadings.

Effect of the Locally Exchangeable Prior Distributions

of the Factor Loadings

In order to demonstrate the effect of the locally exchangeable prior

distributions of the factor loadings the correlation matrix of ASVAB Form 8a in

Table 2(s) is analyzed. The data were collected by Res, Mullins. Mathews, and

Massey (1981) with 2620 subjects and consists of scores on the following ton

tests.

1. General Science

2. Arithmstic Reasoning

3. Word Knowledge

4. Paragraph Comprehension

S. Numerical Operations (speeded)

6. Coding Speed (speeded)

7. Auto-Shop Information

8. Mathematics Knowledge

_°~~~. . . ...°o.ooo- o " - .O " ' . o. , . • . . . . • , - - - o . , - , . . °.o- . "
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8. iK

ME by gMS PROC FACITO with PRIOR uniquenesses given by the result

of L.

9. S2

U by SAS PRC FACTOR with the following PRIOR uniquenesses

.5 .001 .5 .5 .5 .5 .5 .5 .5

10. SX#7

HE by SAS PROC FACTOR with the following PRIOR uniquenesses

.5 .5 .5 .5 .5 .5 .001 .5 .5

11. SI#

NEE by SAS PR0C FACTOR with the following PRIOR uniquenesses

.5 .5 .5 .3 .5 .5 .5 .5 .001

The SAS results with the PRIOR uniquenesses given by the results of DEM.

B.R. ER , BNR, and EM are the same as SMIC. The initial configurations are

shown in Table 3.

Each initial configuration above was submitted to the special program to

check the robustness. The values n = 15.0139 and s = 5.48453 were used for all

the calculations. As shown in Fig. 4 and Tables 4(a) through 4(d), the

program resulted in only two different solutions. The first group, where

variable 4 has low error variance, consists of BKR, lKBR. BKISHI, and XKSBR,

where BK is attached to indicate the results of the special program. The

second group, where variable 4 has high error variance, consists of IL.

KE... MM , IWKSSIC, IESBM., IJSBUR. IKSIM.KSBIRI, EKSBW, EKSX#2, BKSX#7 and

KSX#9. The solutions within each group are identical to each other to six

digits.
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- -2 X-AX- - diag(lXAX-1), if X and A are symetric.

O y-A/8X -Otr[(yAy-) Y]/al.

iniXII8 - (X-1 )', if I is distinct,

- 21 -diag(]X- ), if X is symmtrio.

anlYI/8X - Otr[ yFy PaX.

The Guttuan/Kestelman Formula

Let the following factor analytic model hold.

X = Af + Dz,

where y is p z 1. f is r x 1, z is p z 1,

A is p x r, and D is p x p diagonal,

E() = E() - 0.

D(f) - I, D(z) = I,

Cov(fz) = zero.

These imply

E(z) 0. and D(Z) AA' +D say. 0.

2
Note that the error variances are denoted by D

Cestelman(1952) and Outtman(1935) showed that, given A and D,

the model is not unique in the sence that the variables

f A-ly + Ps,

. ."o
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and

* -1 -1
DO D AIs.

where

PP'= I -AUI- 1A.

and a is any variable which satisfies

E(s) = 0, D(s) = I and Cov( ys ) = zero,
p

also satisfy the model requirement stated above.

Proof

y = +Dz

= AAQ-1r+ps) + D(Dd-Ir-D-Alps)

-lAA'- + AN + D22-1 - As

S(AA,+D2 }-1z

E(MID E(z) + PEW

.

E(_z) = iO-E() + D-1E(s)

-0.

Df ) -1 -'A + P I P'

-1 -SAo A + I - AQ-A

- - . . .
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D~z DO0 a 1 D + D7AP I P'A'D

-1 -1 -1 -1
-DO (D + D A(I-AA0 A)D

- D71 (D 2 o7D 2 +MA'..M'1 2 
10AA')D7

-1 2-1 1 2-1 1
-D7 (D 0 lD2+ +M(-D ) )D

-- 1

= D (Q-MA')D7

Cov(f 'z Cov(A'0'y.AO Z-D AP)

-A'91 a a01 D - -PAD1

-A0
3 1 - (I-A'0 1'A)AD7

A A(C21D-D 14OAADl

A,(Q1DC-fd1$lMA'l) DO;

=A'(07
1 D2 -I-fd0 1 ') D7

=A'(Q 
1 (D2 +AA )D7

AC-1 -1

=zero. I
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Table 1 Summary of the Algoritbw

Prior Distributions of F and A
Globally Exchangeable Locally Exchangeable

The H-step

V 4.6.1.1 4.6.1.4

Y'F 4.6.2.2 4.6.2.6

F F 4.6.2.3 4.6.2.7

A 4.6.3.2 4.6.3.5

Q 4.6.3.2 4.6.3.5

D 4.6.4.3
The M-Stop
a 4.6.8.1 4.6.8.4

CA  4.6.8.1 4.6.8.4
f fixed 4.6.8.5

f fixed 4.6.8.5

n 4.6.8.2 with u and N in 4.6.4.1 and 4.6.4.2

~DFA

The E-step
A 4

A 4.6.5.1 4.6.3.5

Q 4.6.5.1 4.6.3.5
S •

V 4.6.7.2 4.6.2.6
S

¥'F 4.6.2.2 4.6.2.6
C •

D 4.6.4.3
The It-step

a 4.6.8.1 4.6.8.4

CA 4.6.8.1 4.6.8.4 _

f fixed 4.6.8.5

cF fixed 4.6.8.5

n 4.6.8.2 with u and N in 4.6.4.1 and 4.6.4.2

*' after the fomula number indicates analogous correction.

,, .., .. .- ... . . . . ..-...... .. -..-,.:. --... .....,.-- ,,.-,..-.-.-- -.-.-- -,, .--... ,,-. .*.-. .. .. . ..,- • .*. . :2



127

Table 1 (continued)

Prior Distributions of F and A
Globally Exchangeable Locally Exohangeable

ADF

The E-step

V 4.6.1.1 4.6.1.4
4

Y'F 4.6.2.2 4.6.2.6

F 'F 4.6.2.3 4.6.2.7/-
C

D 4.6.4.9

A 4.6.3.2 4.6.3.5

Q 4.6.3.2 4.6.3.5
The N-step
a 4.6.8.1 4.6.8.4

A 4.6.8.1 4.6.8.4
CA fied 4.6.8.4
f fixed 4.6.8.5

C F  fixed 4.6.8.5""

n 4.6.8.2 with u and N in 4.6.4.9 and 4.6.4.2

AD E

The E-step "

V 4.6.1.1 4.6.1.4
C "--. 6

Y'F 4.6.2.2 4.6.2.6
F FP 4.6.2.3 4.6.2.7-

A
A 4.6.3.2 4.6.3.5

0 4.6.3.2 4.6.3.5

The N-step
a 4.6.8.1

CA 4.6.8.1
C

n 4.6.8.3 with u and N in 4.6.4.1 and 4.6.4.2

For the next iteration use
d ( u. + a ) / N+ n+2 ).

.j

.. '>-'.
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Table 1 (continued)

Prior Distributions of F and A
Globally Exohangeable Locally Exchangeable

The B-step
A 465 ....
A 4.6.5.1 4.6.3.5

* C

Q 4.6.5.1 4.6.3.5
* •V 4.6.7.2 4.6.2.5

4
YFF 4.6.2.2 4.6.2.6

* C
F 'F 4.6.2.3 4.6.2.7

The M-step
a 4.6.8.1 4.6.8.4

A 4.6.8.1 4.6.8.4
f fCied 4.6.8.5
CF fixed 4.6.8.5

CFC

n 4.6.8.3 with u and N in 4.6.4.1 and 4.6.4.2

For the next iteration use
d= ( uj + s ) / ( N+n +2 ).

AUKEF

The E-step

V 4.6.1.1 4.6.3.4
e

YIF 4.6.2.2 4.6.2.6
* C

F 'F 4.6.2.3 4.6.2.7
A 4.6.3.9

A 4.6.3.9

The H-step
f fixed 4.6.8.5

CF fixed 4.6.8.5
e

n 4.6.8.3 with u and N in 4.6.4.1 and 4.6.4.2

For the next iteration use
d ( u + )/ ( N + n r + 2 ).J

.......................................



129

Table 2 Data Matrices

(a) Correlation Matrix from larman (1976)

1.000 N 145
.403 1.000
.468 .305 1.000
.321 .247 .227 1.000
.335 .268 .327 .622 1.000
.304 .223 .335 .656 .722 1.000
.332 .382 .391 .578 .S27 .619 1.000
.326 .184 .325 .723 .714 .685 .532 1.000
.116 .075 .099 .311 .203 .246 .285 .170 1.000
.308 .091 .110 .344 .353 .232 .300 .280 .484 1.000
.314 .140 .160 .215 .095 .181 .271 .113 .585 .428 1.000
.489 .321 .327 .344 .309 .345 .395 .280 .408 .535 .512

1.000
.125 .177 .066 .280 .292 .236 .252 .260 .172 .350 .131
.195 1.000
.238 .065 .127 .229 .251 .172 .175 .248 .154 .240 .173
.139 .370 1.000
.176 .177 .187 .208 .273 .228 .255 .274 .289 .362 .278
.194 .341 .345 1.000
.368 .211 .251 .263 .167 .159 .250 .208 .317 .350 .349
.323 .201 .334 .448 1.000

(b) Dispersion Matrix from Francis (1983).

10.934 N = 50
8.104 10.709
10.468 8.623 14.528
8.541 10.155 9.629 14.846
11.998 10.494 12.625 11.063 19.832
-0.047 0.025 0.901 1.892 -0.092 15.804
2.385 2.765 3.480 3.880 2.915 12.921 17.580

-0.626 -0.166 0.867 1.466 0.684 15.001 15.426 24.436
-0.168 1.990 1.433 3.292 0.323 13.498 15.365 16.602 21.326
-1.749 -1.139 -0.453 1.873 -2.958 12.491 13.367 15.814 15.385 22.136

(c) Dispersion Matrix from Mardis, et.al. (1979).

.3023 N 100

.1258 .1709

.1004 .0842 .1116

.1051 .0936 .1108 .2179

.1161 .0979 .1205 .1538 .2944

All the entries are divided by 1000.

.- .- ..,.- -.. , ...... .. ... . -,-+ .-..-.- •.. ..., ..- + .. .-, --. +- . .. .+ .... -,.. ...-..... .. .... . . ..... . . . .,.... .... ....... .
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Table 2 (continued)

(d) Correlation Matrix of ASVAP For a.

1.00 N - 2620
.71 1.00
.83 .70 1.00
.74 .70 .82 1.00
.48 .59 .52 .55 1.00
.43 .52 .48 .49 .64 1.00
.70 .60 .68 .63 .40 .42 1.00
.65 .79 .62 .60 .58 .51 .52 1.00
.71 .69 .67 .64 .45 .45 .75 .64 1.00
.78 .68 .76 .69 .46 .46 .79 .61 .75 1.00

(a) Correlation Matrix from Davis (1944).

1.00 N - 421

.72 1.00

.41 .34 1.00

.28 .36 .16 1.00

.52 .53 .34 .30 1.00

.71 .71 .43 .36 .64 1.00

.68 .68 .42 .35 .55 .76 1.00

.51 .52 .28 .29 .45 .57 .59 1.00

.68 .68 .41 .36 .55 .76 .68 .58 1.00

..........................................

" ''" ... . -.. ,-, m n am am m nd tln . . .... . . . ." . ." . . .. .
"

,,d:
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Table 3 Analysis of Davis' Data: Initial Factor Loadings and Error Variances

1 2 Error Varince

1 0.812843 -0.114657 0.331688

2 0.816658 -0.014656 0.338511

3 0.477504 -0.077121 0.767954

4 0.453904 0.741009 0.246798
5 0.676648 -0.005734 0.546000
6 0.896015 -0.056022 0.200804

7 0.842199 -0.039545 0.295139
8 0.660842 -0.005573 0.566964
9 0.841190 -0.025113 0.297765

1 2 Error Varince

1 0.855872 -0.440427 0.073185

2 0.810301 -0.057998 0.339893
3 0.476637 0.000079 0.772769

4 0.405390 0.146887 0.814058
5 0.672354 0.128670 0.531306
6 0.893300 0.124247 0.186432
7 0.834940 0.078102 0.296642

8 0.654167 0.112733 0.559281

9 0.833737 0.076118 0.298954

BHR

1 2 Error Varince

1 0.810807 -0.122295 0.330455

2 0.813890 -0.010746 0.339987
3 0.476344 -0.087920 0.755056

4 0.439384 0.620345 0.422007

5 0.674253 0.008224 0.541602
6 0.889749 -0.043316 0.212918
7 0.838562 -0.030976 0.299621
8 0.659494 0.012749 0.560605

9 0.837584 -0.013738 0.301959

- . ...... .......... .... . . . . . . . .
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Table 6 (continued)

(b) Factor Loadings and Factor Scoring Weights
Values at the End of Marginal Estimation of Error Variance.

Factor Loadings

1 2 3 4

1 0.584022 -0.337871 0.044703 0.088162
2 0.541687 -0.254189 -0.023022 0.048515
3 0.536513 -0.324311 -0.032304 0.060920
4 0.005327 -0.712261 0.005046 -0.000537
5 -0.024393 -0.734924 -0.021617 0.002592
6 -0.018424 -0.730419 -0.016213 0.001663
7 0.085915 -0.651269 0.075602 -0.008608
8 -0.049310 -0.753803 -0.043608 0.005107
9 0.000102 -0.190575 0.598915 0.132620

10 0.060305 -0.291032 0.599291 0.170080
11 0.158430 -0.185615 0.561312 0.043399
12 0.395364 -0.321665 0.524598 0.007841
13 -0.012577 -0.220312 0.118324 0.511894
14 0.010144 -0.169255 0.105527 0.508116
15 0.061011 -0.227214 0.177197 0.504992
16 0.206767 -0.183465 0.260190 0.488820

Sample Mean and Dispersion of Factor Loadings

1 2 3 4

0.158805 -0.393011 0.183371 0.160349

1 0.047588 0.017093 -0.003962 -0.009201
2 0.017093 0.050459 0.029291 0.028556
3 -0.003962 0.029291 0.056644 0.004383
4 -0.009201 0.028556 0.004383 0.041575

-..-..

. . ..%,
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Table 6 (continued)

(a) (continued)

Factor Scoring Weight

1 2 3 4

1 0.394413 -0.030042 -0.079415 0.017196
2 0.281880 -0.013292 -0.077284 0.001809
3 0.300054 -0.029260 -0.093438 0.009034
4 -0.068900 -0.220555 -0.044782 -0.049292
5 -0.101037 -0.249806 -0.067369 -0.042865
6 -0.098456 -0.254434 -0.065290 -0.046505
7 -0.000655 -0.150542 0.001760 -0.059018
8 -0.133333 -0.280495 -0.089655 -0.037181
9 -0.090953 -0.007862 0.321248 -0.005793

10 -0.060997 -0.026252 0.312716 0.016743
11 0.028308 -0.000603 0.294939 -0.078495
12 0.225164 -0.021997 0.293564 -0.143138
13 -0.050183 -0.016455 -0.021071 0.291471
14 -0.035100 -0.006594 -0.027347 0.303153
15 -0.018764 -0.012775 -0.000553 0.315139
16 0.064876 0.009493 0.031664 0.288458

Sample Dispersion of Factor Scores

1 2 3 4

1 0.655222 -0.073111 0.088669 0.023238
2 -0.073111 1.085088 -0.083745 -0.105452
3 0.088669 -0.083745 0.777002 0.089481
4 0.023238 -0.105452 0.089481 0.597317

...........................................................

.................................................... *•



143

Table 6 Analysis of Harman's Data

(a) Factor Loadings and Factor Scoring Weights
Values at the End of Estimation of Hyperparameters.

Factor Loadings

1 2 3 4

1 0.583695 -0.337757 0.044130 0.087959
2 0.541807 -0.254016 -0.022888 0.048518
3 0.536692 -0.324043 -0.032077 0.060933
4 0.005473 -0.712123 0.005168 -0.000551
5 -0.023985 -0.734585 -0.021257 0.002549
6 -0.018178 -0.730202 -0.015998 0.001643
7 0.085502 -0.651552 0.075240 -0.008566
8 -0.048773 -0.753366 -0.043133 0.005051
9 0.001400 -0.190835 0.598659 0.132125
10 0.061218 -0.291066 0.599099 0.169649
11 0.158644 -0.185795 0.561296 0.043424
12 0.394458 -0.321751 0.524847 0.008443
13 -0.011712 -0.220081 0.118846 0.511821
14 0.010753 -0.169247 0.105990 0.508071
15 0.061607 -0.227154 0.177626 0.504945
16 0.206248 -0.183886 0.260088 0.488898

Sample Mean and Dispersion of Factor Loadings

1 2 3 4

0.159053 -0.392966 0.183477 0.160307

1 0.047453 0.017109 -0.003968 -0.009156
2 0.017109 0.050408 0.029247 0.028539
3 -0.003968 0.029247 0.056595 0.004396
4 -0.009156 0.028539 0.004396 0.041564

...................................

.............................................

. . . . . . . . . . . . . . . . . . . . .. . . .
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Table 5 (continued)

(S) (continued)

Group 4: Variables 5 and 6.

4 [ .0. .0. .0. 665442 1,

CA4
1 2 3 4

1 0.091414 -0.056729 -0.089281 -0.002489
2 -0.056729 0.038457 0.054028 -0.001978
3 -0.089281 0.054028 0.087783 0.003923
4 -0.002489 -0.001978 0.003923 0.003883

Hyperparamters for the Error Variances

n 16.058422 a = 3.429397

-.1
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Table 5 (continued)

(1) Hyperparameters
With Locally Exchangeable Prior with A Priori Zeros

flyprparamoters for the Factor Loadings

Group 1: Variables 1, 3 and 4.

a , .724779, .0, .0, .0 1,

CAl
1 2 3 4

1 0.004785 0.002168 0.002714 0.001054
2 0.002168 0.179911 0.113805 -0.066294
3 0.002714 0.113805 0.072865 -0.043123

4 0.001054 -0.066294 -0.043123 0.031040

Group 2: Variables 7. 9 and 10.

, .0. -.716819, .0, .0 .
!2"

CA2
1 2 3 4

1 0.172095 0.000920 -0.102238 0.060819
2 0.000920 0.002812 -0.004285 0.000267

3 -0.102238 -0.004285 0.070773 -0.037518

4 0.060819 0.000267 -0.037518 0.021920

Group 3: Variables 2 and 8.

-= .0, .0, -.664751, .0 3.

CA3
1 2 3 4

1 0.165055 -0.141059 0.001925 0.101284
2 -0.141059 0.120626 -0.001293 -0.086814
3 0.001925 -0.001293 0.001697 -0.000033

4 0.101284 -0.086814 -0.000033 0.063032
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Table 5 (continued)

(e) Factor Loadings ( Varimax Rotation )
ME by SAS PROC FACXUR with SUC Option

1 2 3 4 Error Variance

1 0.52646 0.58392 0.21769 0.36209 .20338
2 0.37697 0.35478 0.38362 0.62558 .19352
3 0.42621 0.77377 0.28933 0.24984 .07349
4 0.39202 0.61580 0.36376 0.28062 .25605
5 0.15159 0.22804 0.73929 0.27133 .30485
6 0.23203 0.17051 0.70087 0.17277 .39602
7 0.81020 0.29513 0.22335 0.16403 .17969
8 0.29934 0.26396 0.38636 0.69531 .20799
9 0.67360 0.27751 0.25067 0.38481 .25834

10 0.60873 0.41570 0.24666 0.28149 .19890

(M) Factor Loadings
SOblique Rotation from Roe. ol.al (1981))

1 2 3 4

1 .54 .27 .26 -.04
2 .21 .15 .59 .14
3 .70 .16 .13 .08
4 .62 .12 .15 .57
5 .13 .08 .19 .57
6 .07 .20 .10 .56
7 .23 .68 .04 .01
8 .10 .12 .62 .17
9 .13 .58 .29 .00

10 .33 .56 .14 .02

.:.:.:-.-.-...-..-.-..........-.....-.....-.....-.....-.....-.......-.......-.,-.....-.... ..... -......... ,.............-.. -.
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Table 5 (continued)

(o) Factor Loadings ( Varimax Rotation )
With Locally Exchangeable Prior

1 2 3 4

1 0.5440 0.2128 -0.3580 -0.5906
2 0.3905 0.3750 -0.6304 -0.3650
3 0.4487 0.2879 -0.2563 -0.7573
4 0.4006 0.3459 -0.2893 -0.6332
5 0.1639 0.6747 -0.3099 -0.2516
6 0.2259 0.7870 -0.1666 -0.1626
7 0.8133 0.2143 -0.1720 -0.2960
8 0.3180 0.3782 -0.7160 -0.2700
9 0.6899 0.2480 -0.3850 -0.2776

10 0.7143 0.2449 -0.2797 -0.4131

(d) Factor Loadings C Varimax Rotation )
With Globally Exchangeable Prior

1 2 3 4

1 0.5311 0.2211 -0.3624 -0.5924
2 0.3720 0.3724 -0.6205 -0.3583
3 0.4328 0.2894 -0.2534 -0.7586
4 0.3913 0.3621 -0.2788 -0.6252
5 0.1521 0.7155 -0.2794 -0.2350
6 0.2347 0.7190 -0.1691 -0.1677
7 0.8105 0.2242 -0.1670 -0.2968
8 0.3059 0.3921 -0.6988 -0.2665
9 0.6746 0.2508 -0.3850 -0.2788

10 0.6936 0.2382 -0.2799 -0.4174

- *.* *,..o

. . . . . .- - - - - - - - -.
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Table 5 Analysis of ASVAB Form BA

(a) Factor Loadings ( without Rotation )
With Locally Exohangeable Prior with A Priori Zeros

1 2 3 4

1 0.6581 -0.5029 -0.3158 0.0948
2 0.4516 -0.3784 -0.6236 0.2511
3 0.8200 -0.3936 -0.2161 0.1678
4 0.6998 -0.3598 -0.2662 0.2375
5 0.3398 -0.1627 -0.3523 0.6040
6 0.2594 -0.2249 -0.2263 0.7275
7 0.3784 -0.7902 -0.1407 0.1401
8 0.3574 -0.3147 -0.7048 0.2514
9 0.3641 -0.6724 -0.3596 0.1529
10 0.4950 -0.6877 -0.2474 0.1507

(b) Factor Loadings ( Varimax Rotation )
With Locally Exchangeable Prior with A Priori Zeros

1 2 3 4

1 0.5852 -0.5346 -0.3532 0.2043
2 0.3562 -0.3805 -0.6258 0.3684
3 0.7532 -0.4394 -0.2514 0.2802
4 0.6271 -0.3936 -0.2857 0.3415
5 0.2457 -0.1595 -0.3040 0.6727
6 0.1576 -0.2175 -0.1627 0.7744
7 0.2928 -0.8062 -0.1682 0.2076
8 0.2627 -0.3073 -0.6992 0.3665
9 0.2728 -0.6794 -0.3793 0.2399
10 0.4085 -0.7083 -0.2759 0.2393

......................................................... ,..
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Table 4 (continued)

Wdl Final Value of F F.

Solution with Low Error Varinace on Variable #4.

1 2

1 0.937479 0.005313
2 0.005313 0.607890

Solution with High Error Varinace on Variable #4.

1 2

1 0.940400 -0.019373
2 -0.019373 0.364831

o-

I.

.... .... ... .... ... .... .... ... .... ...
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Table 4 (continued)

(o) Final Conditional Expectation of Factor Score Weights.

Solution with Low Error Varinae on Variable #4.

1 2

1 0.155969 -0.153019
2 0.151353 -0.027197
3 0.040342 -0.046109
4 0.075110 0.833996
5 0.078564 -0.006782
6 0.266449 -0.116043
7 0.177608 -0.062457
8 0.074163 -0.005465
9 0.175636 -0.041495

Solution with Hish Error Varinace on Variable #4.

1 2

1 0.185876 -0.762509
2 0.144439 -0.246647
3 0.037639 0.009005
4 0.034176 0.118204
5 0.083909 0.198785
6 0.276851 0.363198
7 0.170171 0.126135
8 0.075363 0.136785
9 0.168515 0.121119
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Table 4 Analysis of Davis' Data: Results

(a) Final Conditional Expectation of Error Varinaces

Solution with Low Error Varinace on Variable #4.

P 0.328924 0.336681 0.749110 0.322409 0.536633 0.209846

0.296318 0.555788 0.298808

Solution with High Error Varinace on Variable #4.

0.232446 0.316048 0.754362 0.793634 0.513588 0.198474

0.297366 0.546577 0.299606

(b) Final Conditional Expectation of Factor Loadings.

Solution with Low Error Varinace on Variable #4.

2

1 0.810576 -0.117377
2 0.813995 -0.012322

3 0.476424 -0.081633
4 0.446113 0.691789
5 0.674320 -0.000144
6 0.890054 -0.050043

7 0.838720 -0.035834
8 0.659376 0.001189
9 0.837695 -0.020270

Solution with High Error Varinace on Variable #4.

1 0.823812 -0.304174
2 0.813901 -0.147551
3 0.477665 -0.003874
4 0.411161 0.135154
5 0.677542 0.140070
6 0.893923 0.086225

7 0.838166 0.033489
8 0.659422 0.097594
9 0.836848 0.031608

,*

p , ,. - . . ,. . : . -. . ., . -. , .. .: . -. , ,., .. -. . - ,. , . . . - . . . . . - - , . - -. ,: . - _ . -- . . - - , . _ -- , - ." '
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Table 3 (continued)

1 2 Error Varithe-

1 0.680000 0.443260 0.341120
2 0.680000 0.447630 0.337230
3 0.420000 0.222940 0.773900
4 0.350000 0.212910 0.832170
5 0.550000 0.393430 0.542710
6 0.760000 0.464740 0.206240
7 1.000000 0.000000 0.000000
8 0.590000 0.287690 0.569130
9 0.680000 0.507700 0.279840

SZ#9

1 2 Error Varince

1 0.680000 0.442940 0.341400
2 0.680000 0.446050 0.338640
3 0.410000 0.243240 0.772730
4 0.360000 0.192510 0.889333
5 O. .50000 0.392760 0.543240
6 0.760000 0.464030 0.207070
7 0.680000 0.510450 0.277040
8 0.590000 0.307850 0.568830
9 1.000000 0.000000 0.000000
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Table 3 (continued)

SSC, SIMX, SBHR, S . SBNR. and SIBW

1 2 Error Varince

1 1.000000 0.000000 0.000000
2 0.720000 0.369970 0.344720
3 0.410000 0.242340 0.773170
4 0.280000 0.326190 0.815200
5 0.520000 0.443850 0.532600
6 0.710000 0.556080 0.186680
7 0.680000 0.491090 0.296430
8 0.510000 0.424890 0.559370
9 0.680000 0.488650 0.298820

SELR

1 2 Error Varince

1 0.280000 0.766790 0.333630
2 0.360000 0.728960 0.339010
3 0.160000 0.453180 0.769030
4 1.000000 0.000000 0.000000
5 0.300000 0.603130 0.546230
6 0.360000 0.818510 0.200450
7 0.350000 0.763130 0.295130
8 0.290000 0.590430 0.567290
9 0.360000 0.756610 0.297930

S1#2

1 2 Error Varince

1 0.720000 0.365890 0.347720
2 1.000000 0.000000 0.000000
3 0.340000 0.357170 0.756830
4 0.360000 0.195780 0.832070
5 0.530000 0.427760 0.536120
6 0.710000 0.558710 0.183750
7 0.680000 0.491730 0.295800
8 0.520000 0.406140 0.564650
9 0.680000 0.488240 0.299220

., , I / 1 -I I . . .°.
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Table 3 (continued)

1 2 Error Varince

1 0.811119 -0.121935 0.330069
2 0.813922 -0.009310 0.339990
3 0.476510 -0.088143 0.754991
4 0.437326 0.610792 0.435266
5 0.674248 0.010934 0.541635
6 0.889839 -0.040549 0.212984
7 0.838630 -0.028670 0.299661
8 0.659503 0.016008 0.S60582
9 0.837628 -0.011161 0.301968

1 2 Error Varince

1 0.836022 -0.382014 0.155784
2 0.811075 -0.103317 0.333018
3 0.476852 -0.012453 0.776130
4 0.408311 0.139907 0.817584
5 0.675165 0.123325 0.531444
6 0.896054 0.102585 0.187412
7 0.836854 0.049606 0.298595
8 0.656418 0.097122 0.562332
9 0.835626 0.047953 0.300820

1 2 Error Varice

1 0.836910 -0.380007 0.155828

2 0.811316 -0.101433 0.333012

3 0.476880 -0.011333 0.776130
4 0.407981 0.140862 0.817585
S 0.674874 0.124915 0.531442
6 0.895811 0.104686 0.187411
7 0.836735 0.051562 0.298595
8 0.656188 0.098659 0.562332
9 0.835511 0.049907 0.300820

.. . . . . . . . . . . .
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Table 6 (continued)

(b) (continued)

Factor Scoring Weight

1 2 3 4

1 0.396668 -0.030005 -0.079840 0.017604
2 0.282561 -0.013289 -0.077726 0.002023
3 0.300887 -0.029298 -0.094023 0.009303
4 -0.069127 -0.220696 -0.044808 -0.049597
5 -0.101663 -0.250306 -0.067666 -0.043101
6 -0.098912 -0.254818 -0.065462 -0.046813
7 -0.000359 -0.150332 0.002056 -0.059417
8 -0.134299 -0.281308 -0.090174 -0.037372
9 -0.092510 -0.007878 0.322904 -0.005700
10 -0.062101 -0.026296 0.313909 0.016912
11 0.028051 -0.000590 0.296059 -0.079150
12 0.226944 -0.022005 0.294864 -0.144876
13 -0.050628 -0.016448 -0.021576 0.292930
14 -0.035381 -0.006523 -0.027898 0.304816
15 -0.019035 -0.012715 -0.001049 0.316910
16 0.065508 0.009780 0.031427 0.289864

Sample Dispersion of Factor Scores

1 2 3 4

1 0.661182 -0.072420 0.088229 0.022859
2 -0.072420 1.087983 -0.083686 -0.105571
3 0.088229 -0.083686 0.783112 0.088769
4 0.022859 -0.105571 0.088769 0.603667

.....................................

. . . . . . . . . . . . . . ..-



147

Table 6 (continued)

(c) Factor Loadings and Factor Scoring Weights
Values at the End of Joint Estimation of Factor Scores and Factor Loadings.

Factor Loadings

1 2 3 4

1 0.612345 -0.599289 0.087146 0.158986
2 0.564085 -0.457232 0.010543 0.103659
3 0.558300 -0.540573 0.000103 0.118598
4 -0.114895 -0.803456 -0.100861 0.011532
5 -0.147203 -0.828065 -0.129800 0.014875
6 -0.137196 -0.820510 -0.120796 0.013547
7 -0.005696 -0.720830 -0.004974 0.000636
8 -0.175978 -0.849867 -0.155236 0.017726
9 -0.331131 -0.159671 0.672917 0.292350

10 -0.188156 -0.314258 0.661643 0.322302
11 -0.018781 -0.272320 0.616332 0.201005
12 0.429215 -0.554887 0.551572 0.152400
13 -0.184234 -0.112750 -0.071843 0.525962
14 -0.158000 -0.059276 -0.083435 0.521776

15 -0.103943 -0.162369 0.016787 0.519876
16 0.129169 -0.209889 0.217741 0.498008

Sample Mean and Dispersion of Factor Loadings

1 2 3 4

0.045494 -0.466578 0.135490 0.217077

1 0.092029 -0.012986 -0.002124 -0.013083
2 -0.012986 0.076038 0.034554 0.049943
3 -0.002124 0.034554 0.088389 0.011916
4 -0.013083 0.049943 0.011916 0.038570

.' . . .. . . . . . . . - . . . . . * * * * . *.i' * * *
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Table 6 (continued)

-- (€) (continued)

Factor Sooring Weight

1 2 3 4

1 0.321475 -0.076134 -0.011602 0.073320
2 0.221562 -0.041760 -0.028399 0.043020
3 0.237909 -0.056945 -0.037947 0.051954
4 -0.101998 -0.180280 -0.062740 -0.053232
5 -0.132437 -0.200977 -0.086976 -0.050169
6 -0.129012 -0.204547 -0.083143 -0.054189
7 -0.024690 -0.126345 -0.002552 -0.059505
8 -0.164554 -0.223292 -0.112158 -0.047452
9 -0.190523 -0.013054 0.289455 0.047816

- 10 -0.123135 -0.033973 0.281129 0.066094
11 -0.032573 -0.030558 0.267324 -0.004878

-- 12 0.229642 -0.083671 0.274954 -0.040951
13 -0.059283 0.014240 -0.105013 0.288855
14 -0.049334 0.022418 -0.113743 0.303809
15 -0.035622 0.010478 -0.082566 0.308744
16 0.061710 0.007897 0.001744 0.263956

* .. Sample Dispersion of Factor Scores

1 2 3 4

1 0.526156 0.118747 0.035452 -0.005656
2 0.118747 0.841797 -0.030994 -0.197943
3 0.035452 -0.030994 0.620489 0.091274
4 -0.005656 -0.197943 0.091274 0.707033

., .
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Table 6 (continued)

(d) Factor Loadings and Factor Scoring Weights
Values at the End of Marginal Estimation of Factor Loadings.

Factor Loadings

1 2 3 4

1 0.590076 -0.561924 0.052008 0.139681
2 0.549209 -0.429081 -0.012859 0.090081
3 0.543649 -0.505775 -0.022812 0.103710
4 -0.079764 -0.776750 -0.0699S5 0.008106 .-

5 -0.106069 -0.796811 -0.093605 0.010848
6 -0.097399 -0.790265 -0.085782 0.009661
7 0.010937 -0.708142 0.009638 -0.000935
8 -0.129254 -0.814379 -0.114118 0.013140
9 -0.208041 -0.187953 0.647443 0.244572

10 -0.103776 -0.318461 0.641745 0.278818 A

11 0.013599 -0.268345 0.607520 0.180310
12 0.332875 -0.493583 0.564576 0.161941
13 -0.124651 -0.136912 -0.013462 0.520344
14 -0.101330 -0.088096 -0.024507 0.516577
15 -0.062553 -0.177377 0.056320 0.515738
16 0.116852 -0.210490 0.208957 0.498821

Sample Mean and Dispersion of Factor Loadings

1 2 3 4

0.071523 -0.454021 0.146944 0.205713

1 0.069742 -0.005311 -0.006141 -0.010388
2 -0.005311 0.064975 0.032524 0.044741
3 -0.006141 0.032524 0.078656 0.010502
4 -0.010388 0.044741 0.010502 0.038153

...................................................
.............................................................................
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Table 6 (continued)

(d) (continued)

Factor Scoring Weight

1 2 3 4

1 0.310975 -0.071712 -0.025250 0.068637
2 0.216437 -0.039193 -0.034988 0.040520
3 0.232531 -0.053251 -0.044705 0.048807
4 -0.079177 -0.173407 -0.043572 -0.060132
5 -0.103658 -0.192315 -0.062792 -0.058892
6 -0.100379 -0.195927 -0.059090 -0.062856
7 -0.016103 -0.123747 0.004636 -0.062054
8 -0.129295 -0.212685 -0.082522 -0.058155
9 -0.128161 -0.018218 0.282117 0.020503

10 -0.078863 -0.035845 0.276962 0.040581
11 -0.016123 -0.030625 0.266015 -0.016500
12 0.171872 -0.073546 0.284514 -0.033907
13 -0.038000 0.012078 -0.083439 0.276675
14 -0.028535 0.019496 -0.091102 0.290919
15 -0.018683 0.009014 -0.065872 0.299253
16 0.056413 0.007544 -0.001865 0.265621

Sample Dispersion of Factor Scores

1 2 3 4

1 0.526156 0.118767 0.035453 -0.005663
2 0.118767 0.841779 -0.030984 -0.197950
3 0.035453 -0.030984 0.620473 0.091274
4 -0.005663 -0.197950 0.091274 0.707048

p r

• 1'
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Table 6 (continued)

(e) Factor Loadings and Factor Scoring Weights
Values at the End of MarSinal Estimation of Factor Scores.

Factor Loadings

1 2 3 4

1 0.612883 -0.620351 0.087765 0.163808
2 0.564815 -0.472804 0.011541 0.107391
3 0.559069 -0.557269 0.001153 0.122592
4 -0.120888 -0.808003 -0.106144 0.012138
5 -0.1S3182 -0.832600 -0.135066 0.015476
6 -0.143460 -0.825260 -0.126312 0.014180
7 -0.012304 -0.725842 -0.010794 0.001311
8 -0.181844 -0.854317 -0.160402 0.018312
9 -0.342213 -0.162270 0.675906 0.300225

10 -0.191989 -0.322731 0.663786 0.330311
11 -0.024473 -0.283294 0.619279 0.211781
12 0.436680 -0.578528 0.553292 0.164836
13 -0.194428 -0.104943 -0.083961 0.526721
14 -0.169842 -0.050546 -0.097312 0.522669
15 -0.114489 -0.158021 0.006412 0.520785
16 0.122458 -0.214506 0.215417 0.498839

Sample Mean and Dispersion of Factor Loadings

1 2 3 4

0.040425 -0.473205 0.132160 0.220711

1 0.094559 -0.015765 -0.001086 -0.013216
2 -0.015765 0.078125 0.033405 0.051106
3 -0.001086 0.033405 0.090609 0.012573
4 -0.013216 0.051106 0.012573 0.038553

*~~~~.*.**~~~~~ .... . . .. . . . . . . . . . . . . . . . .. . . . . .
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Table 6 (continued)

(e) (continued)

Factor Scoring Weight

2 3 4

1 0.310729 -0.076873 -0.014801 0.077513
2 0.214367 -0.042087 -0.030034 0.045990
3 0.230309 -0.057105 -0.039526 0.054979
4 -0.101932 -0.176757 -0.062581 -0.055287
5 -0.131321 -0.196949 -0.086196 -0.052904
6 -0.128394 -0.200537 -0.082699 -0.056773
7 -0.027509 -0.124206 -0.004153 -0.059769
8 -0.162279 -0.218703 -0.110677 -0.050922
9 -0.190825 -0.012891 0.286579 0.047963
10 -0.122128 -0.033905 0.277122 0.066889
11 -0.036273 -0.031106 0.262660 -0.000217
12 0.223221 -0.085000 0.266164 -0.030328
13 -0.056747 0.016223 -0.107366 0.286299
14 -0.047645 0.024393 -0.116936 0.301758
15 -0.034660 0.012265 -0.085416 0.306006
16 0.059241 0.008256 -0.000125 0.261205

5

S.rple Dispersion of Factor Scores

1 2 3 4

1 0.502935 0.126244 0.025704 -0.003952
2 0.126244 0.813467 -0.021044 -0.192335
3 0.025704 -0.021044 0.597943 0.087372
4 -0.003952 -0.192335 0.087372 0.705390

.. .. .. . . ...-. ..... . . . . ..,.. .- ".-. ...." - , ..,-..... ..,.. .. . . , .,,. ...,.. .,.. . , . . , . .. , ... . .,- . . ,...
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Table 6 (continued)

(f) Factor Loadings and Factor Scoring Weights
Error Variances at the End of Hyperparameter Estimation.

0.463089 0.625698 0.573485 0.383050 0.355957 0.346092
0.481711 0.330248 0.491035 0.475497 0.493230 0.411494
0.644330 0.620561 0.565170 0.562536

lWAND VARIANCE OF ERHR VARIANCES = 0.488949 0.009997

(g) Factor Loadings and Factor Scoring Weights
Error Variances at the End of Marginal Estimate of Error Variance.

0.455959 0.617735 0.565945 0.378151 0.351078 0.341424
0.476000 0.325488 0.483854 0.468998 0.486393 0.405130
0.635949 0.612180 0.557435 0.554944

MEAN AND VARIANCE OF EM( VARIANCES = 0.482291 0.009758

• -

. . . . . . .. . . . . ..
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Table 6 (continued)

(h) Factor Loadings and Factor Scoring Weights

Hyperparsamters

Hyperpar amesters of the Error Variances

n 35.509313 a 16.601690

Hyperparameters of the Factor Loadings

Group 1: Variables # 1, 2, and 3.

SSC.54064, .0 .0 .01

C
Al

1 2 3 4 .

1 0.000901 -0.000338 0.001448 0.000530
2 -0.000338 0.097439 0.000604 -0.021174
3 0.001448 0.000604 0.002367 0.000611
4 0.000530 -0.021174 0.000611 0.004843

Group 2: Variables # 4, 5, 6, 7 and 9.

[.0. -. 716366, .0. .0 1

C
A2

1 2 3 4

1 0.002903 0.002197 0.002550 -0.000292
2 0.002197 0.001671 0.001935 -0.000221
3 0.002550 0.001935 0.002258 -0.000258
4 -0.000292 -0.000221 -0.000258 0.000039



I• t

Table 6 (continued)

(Wl (cont inued)

Group 3: Variables # 9. 10, 11, and 12.

-3 - [ .0, .0, .570975, .0 ]

CA3
1 2 3 4

1 0.048505 -0.044281 -0.004950 0.004370
2 -0.044281 0.066629 0.000686 -0.022250
3 -0.004950 0.00686 0.001085 0.002238
4 0.004370 -0.022250 0.002238 0.013150

Group 4: Variables # 13, 14. 15, and 16.

- .0, .0, .0. .S03434 ]

CA4
1 2 3 4

1 0.013770 -0.012277 0.017359 -0.000967
2 -0.012277 0.043087 -0.034108 -0.000208
3 0.017359 -0.034108 0.032701 -0.000599
4 -0.000967 -0.000208 -0.000599 0.000115

...... ,
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0. 1. 2. 3o 4. 5. 6. 7, 8. 9.
Error Variance --------------------------------------

0.900 I
0.788 1
0.776 1
0.764 1 3
0.752 I 
0,740 I B N N
0.728 1
0.716 1 N
0.704 1
0.692 I 
0.680 N N 3 N .
0.668 N N B
0,6 61 N C -
0.644 I C
0.632 1
0.620 I N N N N
0.60 1 P P N
0.596 1 0 a C C C C C N
0.584 1 P C
0.572 1 0 P P p p p
0,5601 0 0 p
0.m I , J 0
0.536 I J
0241 J -J J J
0.512 I 6 1-
0.500 I 6
0.4881 6 6 6 6 6 6
0.476 1 B
0.464 I
0.452 1 L L
0,440 1 L L L L L K K
0.428 1 L K K K I K I I L
0.416 I I K
0,404 1 K I
0.392 I I D
0.380 1 1 D D D D
0.3681 1 D B B
0.356 1 D E E E E
0.344 I E F F E
0.332 1 H H H H H
0,320 1 E E H
0.306 I E
0.296 1 F F
0.284 1 H H H
0.272 1
0.260 I
0.248 I
0.236 1
0,224 1
0.212 1
0.200 1

0, 1. 2. 3. 4. 5. 6. 7. 8. 9

Figure, I Various Estimates of Error Variances of the Harsan ata

N = 145

D.F. LAMBDA MEAN VARIANCE
1: N.L.E. BY SAS PROC FACTOR 0,477034 0.022715
2: NARGINAL ESTIMATE OF E-VAR BY E-AF 0.495399 0.023301
3: MARJINAI. ESTIMATE OF E-VAR BY E-FA 0,494445 0,023843
4' LOADINGS DY FORMULA, E-VAR BY LO6-NORNAL 26.826477 0.473865 0.484629 0,013195
5: LOADINGS BY E-, ERR-AR BY LOW-NORAL 29,735748 0.474122 0.484497 0.012549
64 LOADINGS BY E-FA, ERR-VAR BY LO-N)RNMAL 29.842918 0,473667 0.484009 0.012542
7: LOADINGS BY E-AF, ERR-VAR BY EN AFTER E-AF 30.44688 0,463148 0.489141 0.012720
8: LOADINGS BY E-FA, ERR-VAR DY EM AFTER E-FA 30.610523 0,462792 0.488639 0,012693
9LOADINGS BY E-AF, ERP-VAR BY EN AFTER E-F 28.854729 0.444613 0.471290 0.012644

LANDIA = s x n

... ... .. ... .. ... ... .. ... ..... .I
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0. 1. 2. 3. 4, 5, 6, 7, 8. 9.
Error Variance -------------------------------------------------------------------------------------------

9.000 I
8.840 1
8.680 I
8.520 1
8.360 1 ..
8.200 1
8.040 1 J
7.880 I
7,720 I
7.560 I
7.400 1
7.240 I H H
7.080 I
6.920 I H
6,760 1
6600 I
6,440 I
6.290 1
6.120 I D D
5.9601 H"
5.800 1 D H H
5.640 I 
5.480 1
5.320 1 1 1
5.1601 1 D D D 0 D
5.000 1 E I I D
4.840 I I I I E E I
4.680 I E E 1
4.520 1
4.360 1 F F F F F
4.200 I F F C C C C F
4.040 1 F C 6 6 C
3.880 1 C C 6 6
3.720 I 6 B B 6
3.560 1 C 3 0 D .
3.400 I 6 B
3.240 1 6 A A
3.080 1 6 AA
2.920 1 A A
2.760 I
2.600 1
2.440 I
2.280 1
2.120 1
1.960 1
1.800 1 A A
1.640 1 A
1,480 I
1,320 I
1.160 1
1.000 I ,-.

0. 1. 2. 3, 4, 5. 6. 7. 8. 9.

Fiture. 2 Various Estimates of Error Variances of the Francis Data

N z 50

D.F. LAIA HA VARIANCE
I: N.L.E. BY SAS PROC FACTOR 4,575092 3.291272
2: ARSINA. ESTIINTE OF E-VAR BY E-AF 4.806640 3.549344
31 HARBINAL ESTIIATE OF E-VR BY E-FA 4.802694 3,565243
4: LOADINSS BY FORIWLAv E-VAR BY LOB-WUIMI 20,144287 4.450M5 4,521993 1.203936
5: LOADINU SY E-AF, ERR-VAR DY LOB.N-IRAL 26.009495 4,468840 4,519325 0,977160
6: LOAIINIS DY LOG-IIAL 25."8222 4.467546 4.518114 0.977998
7: LIMDINS DY F-AFt ERR-VAR SY EN AFTE -AF 29,433685 4.442304 4.63859 0.923927
8: LOADINS BY (.-fAo ERR-VR DY EN AFTE E-FA 29,431026 4.440956 4.637250 0,924261
9: LOADDIS DY E-A. ERR-VAR BY EN AFTER E-F 25.8102.38 4.187857 4t409835 0.992775

LAIIA s x n
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01 1. 2. 3. 4. 5. 6, 7. 8. 9.
Error Variance -----------------------

0.200 1
0.196 I A A A
0.192 I A A ,
0.188 1 A A A A
0.134 I
0.180 I
0.176 1
0.172 1
0.168 I
0.164 I
0.160 I
0.156 1
0.152 I
0.148 1
0.144 I E E E
0.140 1
0.136 1 E E E E E E
0.132 1
0.128 I
0,124 1
0.120 I
0.116 1
0.112 I
0.100 1
0.104 I
0.100 1
0.0961 B B B B B
0.092 I D D B -
0.008 I 0 D 0 D
0.04 1 P D D
0.080 I
0,076 1
0.072 I
0.068 1
0.064 1
01060 1
0.056 1
0.052 Z
0,048 1
0.044 1
0.040 I
0.036 1
0.032 I
0.028 1 C C C C C C
0.024 I
0.020 1 C C C
0.016 1
0.012 1
0.006 I
0.004 1
-0.000 I

0. 1. 2. 3. 4. 5. 6. 7. 8. 9.

Fiture. 3 Various Estimates of Error Variances of the Hardia, et., al. Data

N = 100

D.F, LAMBDA MEAN VARIANCE
1: N.L.. BY SAS PROI FACTOR 0.106888 0,003425
2: MARGINA. ESTIMTE OF F-4IAR BY E-AR 0.107966 0,003465
3: MARINAL ESTINATE OF E-VAR BY E-FA 0.108053 0,003517
4: LOADINS BY FONULA, E-VAR BY LOB-NORIML 3.182747 0.086875 0.103969 0.002884
5: LOASINm BY E-AF, ERR-VA BY LOG-N401K 4.21580 0,007360 0.103681 0.002780 -

6: LOADINSS BY E-FA, ERR-VAR BY LOS-NORIA 4.131446 0,087010 0,103574 0.002900
7: LIMIINS BY E-A ERR-VA 3Y EN AFTER E-AF 3,838849 0,066296 0.105307 0.002966
8? tOADINR BY E-FA, ERR-VAR BY EM AFTER E-FA 3.743914 0,065507 0.105242 0.002991
9: LOADINGS BY E-AF, ERR-VAR BY EM AFTER E-F 3.757377 0.064932 0.104149 0.002926

LA A 2 s x n

. .... ... ... ... ....
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ir V aria ce - ----- --------------------------------------------------------------------------------------
1.000 1
0.990 I
0.960 1
0.940 1
0.920 I
0.900 1 D
0.880 1
0.860 1
0.840 I D D
0.820 1 D D P D
0.900 1 D
0.780 1 C C C C C C C
0.760 C C C C C
0.740 I
0.720 I
0.700 I
0.680 1
0,660 1
0.640 1
0.620 1
0.600 1
0.580 I H H H H H H H H H
0.560 1 E H E E H E E E H H
0.540 1 E E E E E E
0.520 I E
0.500 1
0.480 I
0.460 1
0,440 1 D D
0.420 I
0.400 I
0.380 1
0.360 I B A A A
0.340 1 B a B 3 B B B B B D
0.320 1 I I I I B
0.300 1 I I 6 6 6 6 1 I I 1 1
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Figure. 4 Various Estimates of Error Variances of the Davis Data
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13 18 (2.2.23) A = D Q(L + Ir) should be (2.2.23) A D"0(L - Ir)
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140 5(f) the (4.4) element is .07

153 6(f) delete Factor Loadings and Factor Scoring Weights
6(g)

154 6(h) delete Factor Loadings and Factor Scoring Weights

L176



Bayesian Factor Analysis*

Shin-ichi Mayekawa

The University of Iowa

Abstract

A new Bayesian procedure for factor analysis is developed in which
factor scores as well as factor loadings and error variances are treated
as parameters of interest. The presentation is fully Bayesian in the
sense that all the parameters have prior distributions and the posterior
mode of a subset of the parameters is used as the point estimate.

The model is a standard one where the observations are expresssed
as the sum of the linear combination of factor scores, with factor
loadings being the weights, and a normal error term. As the prior distri-
bution the following exchangeable form is assumed:

A factor score vector for each observation has a common normal

distribution.
A factor loading vector for each variable has a common normal

distribution.
A error variance for each variable has a common inverted chi

square distribution.
When the exchangeability of all the observations/variables is in question
observations/variables may be divided into several subsets and the
observations/variables within each subset may be treated as exchangeable.

Since the posterior marginal distribution of factor loadings and
error variances can be expressed as the product of the covariance-based
likelikhood and the prior distributions of factor loadings and error
variances the proposed method includes both the random and the fixed
factor analysis models.

The mode of the hyperparameters is first derived from their posterior
marginal distributions and conditional on those values the mode of error
variance is derived from their posterior marginal distributions. Then,
conditional of those estimates, the point estimate of factor scores
and factor loadings are derived as the joint or the marginal mode of the
posterior distribution of factor scores and factor loadings depending on
the investigator's interest.

The marginalization is done via some variations of the EM algorithm
and it is found that the different variations result in almost identical
estimates. It is also found that the effect of the prior distribution of
error variances is such that it reduces the number of local maxima.
Finally, by specifying a priori zeros in the locational hyperparameters
of factor loadings, a simple structure can be obtained without rotation.

*Support for this research was provided under contract #NO0014-83-
C-0514 with the Personnel Training Branch of the Office of Naval Research,
Melvin R. Novick, Principal Investigator. I am indebted to Professor

.X- Novick and Dr. Ming-mei Wang for their comments on earlier drafts. Also,
I would like to thank Professor Tom Leonard of the University of Wisconsin.
Some of the methods used in chapter IV were originally proposed by him.
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